Jamie Radcliffe's [Small Mugshot] Home Page

Jamie Radcliffe
217 Avery Hall
Department of Mathematics and Statistics
University of Nebraska-Lincoln
Tel: (402) 472-9851
Fax: (402) 472-8466
e-mail: aradcliffe1@math.unl.edu

AGAM

Here is the Mathematcia Code for use in the AGAM Fractals course: [download code]

Teaching Activities

Classes

Office Hours


Research Activities

My research interests are in Combinatorics and Convex Geometry; in particular Extremal Set Systems, Reconstruction Problems, and Geometric Inequalities.

Papers

  1. Reverse Kleitman Inequalities, B. Bollobas, I. Leader and A.J. Radcliffe, Proc. London Math. Soc. (3) 58 (1989) 153--168
  2. Isoperimetric Inequalities for Faces of the Cube and the Grid, B. Bollobas and A.J. Radcliffe, Europ. J. Combinatorics 11 (1990) 323--333
  3. Congruence problems involving Stirling numbers of the first kind, R. Peele, A.J. Radcliffe and H. Wilf, Fibonacci Quarterly 31 (1993) 27--34
  4. Littlewood-Offord Inequalities for Sums of Random Variables, I.B. Leader, and A.J. Radcliffe, SIAM Journal of Discrete Math. 7 (1994) 90-101.
  5. Defect Sauer Results, B. Bollobas and A.J. Radcliffe, J. Comb. Thy., Series A 72 (1995) 189-208.
  6. Analysis of a simple greedy matching algorithm, A. Frieze, A.J. Radcliffe, and S. Suen, Proceedings of the 4th Annual Symposium on Discrete Algorithms, 1993, 341--351. This also appears in Combinatorics, Probability, and Computing, 4 (1995) 47--66.
  7. Every tree contains a large induced subgraph with all degrees odd, A.J. Radcliffe and A. Scott, Discrete Math., 140 (1995) 275--279.
  8. Extremal Cases for the Ahslwede-Cai Inequality, A.J. Radcliffe and Zs.~Szaniszl\'o, J. Comb. Thy., Series A, 76 (1996), 108--120
  9. All trees contain a large induced subgraph having all degrees $ 1\pmod k$, D. Berman, A.J. Radcliffe, A. Scott, H. Wang, and L. Wargo, Discrete Math., 175 (1997) 35--40
  10. Maximum Determinant of ($\pm1$)-matrices, M. Neubauer and A.J. Radcliffe, Linear Algebra and its Applications, 257 (1997) 289--306
  11. Reconstructing subsets of $\Z_n$, A.J. Radcliffe and A.D. Scott, J. Comb. Thy., Series A., 83 (1998) 169--187
  12. Reconstructing subsets of reals, A. J. Radcliffe and A. D. Scott, Electronic J. of Combinatorics 6 (1999) Research Paper 20, 7pp. (electronic)
  13. Finite subsets of the plane are 18-reconstructible, L. Pebody, A. J. Radcliffe, and A. D. Scott, SIAM J. Discrete Math 16 (2003) 262--275
  14. Semi-regular graphs of minimum independence number, Patricia Nelson and A.J. Radcliffe, Discrete Math 275 (2004) 237--263
  15. Reversals and transpositions over finite alphabets, A. J. Radcliffe, A. D. Scott, and E. L. Wilmer, SIAM J. Discrete Math 19 (2005) 224-244
  16. Reconstructing under group actions, A. J. Radcliffe and A. D. Scott, Graphs and Combinatorics 22 (2006) 399-419
  17. McKay's canonical graph labeling algorithm, S. G. Hartke and A. J. Radcliffe. In "Communicating Mathematics", vol. 479 of Contemp. Math. (2009) 99-111, Amer. Math. Soc., Providence RI
  18. On the interlace polynomial of forests, C. Anderson, J. Cutler, A. J. Radcliffe, and L. Trialdi, Discrete Math 310 (2010) 31--36
  19. Extremal numbers of graph homomorphisms, J. Cutler and A. J. Radcliffe, accepted by J. Graph Theory.
  20. Negative Dependence and Srinivasan's sampling process, J. Brown Kramer, J. Cutler, and A. J. Radcliffe, submitted to Combinatorics, Probability, and Computing
  21. An entropy proof of the Kahn-Lovasz theorem, J. Cutler, and A. J. Radcliffe, submitted to Electronic J. of Combinatorics
  22. Hypergraph independent sets, J. Cutler, and A. J. Radcliffe, submitted to Graphs and Combinatorics
Jamie's Home Page / Dept. of Mathematics and Statistics / UN-L / aradcliffe1@math.unl.edu / Revised (but not much) September '10