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The maximal determinant of (�1)-matrices 2goes back to the beginnings of matrix theory. It is a simple consequence ofHadamard's inequality [Hd] that for all M 2 HndetM � ( nYi=1 nXj=1m2ij)1=2 � nn=2: (1)There is a large body of work addressing the question of when (1) is sharp.De�nition 1.1 Matrices in Hn for which equality holds in (1) are calledHadamard matrices.For an n�n Hadamard matrix to exist it is necessary that n be either 1,2, or a multiple of 4, and it is conjectured that this condition is also su�cient.According to [AK] the smallest value for which the existence of a Hadamardmatrix is in question is n = 4 � 107 = 428.Hadamard matrices do exist for many in�nite families of values of n, e.g.Sylvester ([Syl]) proved that Sylvester's matrix,S =  1 11 �1 !;tensored with itself t times, gives a Hadmard matrix of dimension 2t. ThePaley construction (see e.g. [AK], p. 271-275, or [vLW]) for an odd primepower p gives a Hadamard matrix of size p + 1 if p � 3 (mod 4) and size2p+ 2 if p � 1 (mod 4), thus providing another in�nite family of Hadamardmatrices.For further discussion of Hadamard matrices the reader might consult[Bo] or one of the surveys [Ag] or [SY].1.1 (0; 1)-MatricesThere is a strong connection between Hn and Zn�1, the set of (0; 1)-matricesof dimension n � 1. Speci�cally, there exists an injection � from Zn�1 intoHn, which preserves the relative sizes of determinants. The function � canbe described as follows:Given M in Zn�1 let M 0 be the n� n block matrixM 0 =  1 10 �2M !



The maximal determinant of (�1)-matrices 3�(M) is obtained by adding the �rst row of M 0 to each other row. Theresulting matrix is clearly a (�1)-matrix and the passage from M 0 to �(M)doesn't change the value of the determinant. Thus it is clear thatdet�(M) = (�2)n�1 detM:Let Jn denote the n�n matrix all of whose entries are 1. The map � canalso be described as follows:�(M) = Jn �  0 00 2M !:The image of � is the set H0n of matrices N = (nij) in Hn such thatn1j = 1 for all 1 � j � n and ni1 = 1 for all 1 � i � n. The set H0nis a su�ciently large subset of Hn for our purposes since for every matrixM 2 Hn we can �nd suitable diagonal matrices P = (pij) and Q = (qij) withpii; qii 2 f�1g such that PMQ 2 H0n. Since det P = �1 = detQ we havej detM j = j detPNQj.If we write m(C) for max fdetM jM 2 Cg then the above remarks showthat m(Hn) = m(H0n) = 2n�1m(Zn�1):In particular m(Zn�1) � nn=2=2n�1 and the (0; 1)-matrices which attain thisbound are the pre-images under � of Hadamard matrices. From anotherpoint of view they can be regarded as the incidence matrices of Hadamarddesigns; a class of symmetric designs with parameters (4m�1; 2m�1;m�1).(See [AK], [Bo], or [Ag] for more details.)1.2 What is known when n 6� 0 (mod 4)?The �rst reference to the case n 6� 0 (mod 4) seems to be Colucci ([Col]) in1926. The following lemma, concerning the case n � 1 (mod 2), was discussedby Barba ([Ba]), and proved, independently of Barba, by Ehlich ([Eh1], Satz4.1).Lemma A:[Barba, Ehlich] Suppose that n � 1 (mod 2). For all N 2 HndetN � (2n� 1)1=2(n� 1)(n�1)=2: (2)



The maximal determinant of (�1)-matrices 4I.e., m(Hn) � (2n� 1)1=2(n� 1)(n�1)=2. Equivalently, for all M 2 Zn�12n�1 detM � (2n� 1)1=2(n� 1)(n�1)=2: (3)In 1937 T. Popoviciu ([Po]), apparently unaware of [Ba], gave a weakerbound. Curiously enough, J. Brenner [Bre] claims Popoviciu's bound to besharper than (2). Neither [Ba] nor [Po] address the case n � 2 (mod 4)separately but rather use Hadamard's bound for n � 0 (mod 4) in this caseas well, though it was known that Hadamard's bound can only be attainedfor n = 1; 2 or n � 0 (mod 4).It seems that H. Ehlich and, independently, M. Wojtas were the �rst toaddress the case n � 2 (mod 4) ([Eh1] and [Wo]). They also seem to havebeen the �rst to address the question of the structure of matrices of maximaldeterminants.Proposition A:[Ehlich, Wojtas] Suppose that n � 1 (mod 4). For all N 2Hn inequality (2) holds and in order for equality to hold in (2) it is necessarythat 2n � 1 be a square and that there exists an N 2 Hn with NNT =(n� 1)In + Jn.Proposition B:[Ehlich, Wojtas] Assume n � 2 (mod 4). For all N 2 HndetN � (2n� 2)(n� 2) 12n�1 (4)Moreover, equality in (4) holds if and only if there exists N 2 Hn such thatNNT = NTN =  L 00 L !;where L = (n � 2)I + 2J is a n2 � n2 matrix. A further necessary conditionfor equality to hold is that 2n� 2 is the sum of two squares.H.S.E. Cohn gave an independent proof of Lemma B above and providedfurther information on the structure of maximal examples ([Co2], Theorem2). In a sequel to [Eh1] Ehlich investigated the case n � 3 (mod 4) ([Eh2]).Proposition C:[Ehlich] Assume n � 3 (mod 4) and n � 63. For all N 2 HndetN � s4 � 11677 (n� 3)n�7n7 (5)



The maximal determinant of (�1)-matrices 5Moreover, for equality to hold it is necessary that n = 7m and that thereexists N 2 Hn withNNT = I7 
 ((n� 3)Im + 4Jm)� Jn:The corresponding bounds for all values n � 3 (mod 4), n < 63, are alsogiven in [Eh2] and the structures of NNT for normalized maximal examplesN is also given. The theme for values n < 63 is the same as for the aboveexample: A (�1)-matrix N has maximal determinant if NNT has blockstructure with the blocks along the diagonal of the form (n � 3)I + 3J andthe o�-diagonal blocks equal to �J .Though it is well-known that the Hadamard bound in the case n �0 (mod 4) is attained in�nitely often and has to be considered sharp in thissense, it was not known if the bounds given in Proposition A, PropositionB and Proposition C are sharp in this sense. The object of this paper is toshow that this is indeed the case for n � 1 (mod 4) and n � 2 (mod 4). Forn � 3 (mod 4) we provide an in�nite family of examples which asymptoticallyhave determinants slightly larger than 1/3 of the bound of Proposition C.The case n � 1 (mod 4) is crucial to everything and so we provide our ownversion and proof of Proposition A to keep the exposition self-contained. Wethen extend the known results to show that the bound of Proposition A issharp, i.e. it is attained in�nitely often.Theorem A: Suppose that n � 1 (mod 4). For all N 2 Hn inequality (2)holds. In order for equality to hold in (2) it is necessary that 2n � 1 be asquare and that NNT = (n� 1)In+R where rankR = 1 and jrij j = 1 for alli, j.Furthermore, if n = 2(q2+ q)+ 1 for some odd prime power q, then thereexist matrices N 2 Hn for which equality holds in (2), i.e.m(Hn) = (2n� 1)1=2(n� 1)(n�1)=2 (6)for all n = 2(q2 + q) + 1, q an odd prime power. In particular the bound in(2) is sharp for in�nitely many values of n.The proof of Theorem A naturally divides into two parts. In section 2 weprove inequality (2). In section 3 we build an in�nite family of examples toprove thatBn = fN 2 Hn j n � 1 (mod 4) and N attains equality in (2)g



The maximal determinant of (�1)-matrices 6is non-empty whenever n = 2q2 + 2q + 1 and q is an odd prime power.I. Kaplansky [Ka2] claims that the bound in (2) can be attained only ifthere exists a design with parameters (2q2 + 2q + 1; q2; (q2 � q)=2).The particular values n = 17 and n = 21 for which the bound cannot beattained are discussed in [MK] and [CKM] respectively.The examples that we construct can be used to give an in�nite family ofexamples which attain the bound of Proposition B.Theorem B: If n = 4(q2 + q) + 2 for some odd prime power q, then thereexists a matrix N 2 Hn for which equality holds in inequality (4) of TheoremA. In particular, equality holds in (4) for in�nitely many values of n.This was already observed by Whiteman ([Wh]) who gave the identicalproof as given below. He presented his results in the context of D-optimaldesigns. For a de�niton ofD-optimal designs and other optimality criteria see[SS]. In [KKS] another in�nite family of matrices is given whose determinantsattain the bound in (4).Proof [of Theorem B] Suppose n � 1 (mod 4) and that N 2 Bn. Aftera suitable change of basis we may assume, by Theorem A, that NNT =(n� 1)In + Jn. Now de�ne~N = S 
N =  N NN �N ! (7)where S is Sylvester's matrix de�ned above. It is easy to show that~N ~N T =  (2n� 2)In + 2Jn 00 (2n� 2)In + 2Jn ! (8)which, implies that det ~N = (2n� 2)(n� 2) 12n�1 ([Eh1], [Wo] or [Co2]).Unfortunately, we were unable to construct an in�nite family of exampleswhich attain the bound of Proposition C. In fact, we do not even know ofa single example for which the bound in Proposition C is attained. Never-theless, our e�orts yielded an in�nite family of examples whose determinantsassymptotically take on values slightly larger than 1/3 of the bound of Propo-sition C. This shows that the bound of Proposition C is of the correct order.This is a signi�cant improvement over the lower bound given in [CL].



The maximal determinant of (�1)-matrices 7Theorem C: There exists an in�nite family of examples Nn 2 Hn such thatlimn!1 det Nnhn = 12 � 711�3p7 � 0:34where h2n = 4�11677 (n� 3)n�7n7.A proof of Theorem C is given in section 4.At this point it remains unresolved if the bound in (5) can ever be at-tained. We have no doubt that for a particular value of n � 3 (mod 4) ane�cient computer search is likely to produce examples whose determinantshave larger values than the ones given by us in section 4. The real challenge,however, is to �nd an in�nite family of examples of examples whose deter-minants take on the bound in (5) or to show that the bound in (5) can beimproved. It is conceivable that it is not sharp. The methods used by Ehlichin [Eh2] study the maximum of the values of the determinant on a subset ofpositive de�nite matrices. This subset is de�ned by certain necessary condi-tion its elements have to satisfy if they are to be of the form NNT for someN 2 Hn. It is certainly possible that this subset contains many positivede�nite matrices which are not of the form NNT for some N 2 Hn. Hencethe bound derived from this subset might be larger than the actual bound.Having said that, we mention that B. Solomon ([Sol]) has provided uswith examples for n = 11, n = 15 and n = 19, believed on the basis ofcomputer experiments to be maximal, which seem to show that maximalexamples tend to exhibit the behavior forecast in [Eh2].Some interesting comments on determinants of (�1)-matrices in the con-text of D-optimal designs can be found in [GK].2 The proof of the inequality of Theorem AThe next lemma is proved in [Co1]. For completeness we include a (slightlyshorter) proof.Lemma 2.1 Suppose that T 2Mn(R) is a symmetric, diagonalizable matrixwith the following properties: it has 0 on the diagonal, In + T is positivede�nite, and the root mean square of its o�-diagonal elements is c. Thendet(In + T ) � (1 + c(n� 1))(1� c)n�1 (9)



The maximal determinant of (�1)-matrices 8Proof Let z1, z2, : : :, zn be the eigenvalues of T . We know that Pni=1 zi = 0and nXi=1 z2i = Xi;j t2ij = n(n� 1)c2 (10)Split the eigenvalues into two classes according to their sign; let x1, x2,: : : ; xk be the non-negative ones, y1, y2, : : : ; yn�k the negative ones. Set�x = (Pk1 xi)=k, and �y = (Pn�k1 yi)=(n� k). Nowdet(In + T ) = kYi=1(1 + xi) � n�kYi=1(1 + yi)� (1 + �x)k(1 + �y)n�k; (11)where the inequality is just the ArithmeticMean{GeometricMean Inequality.Thus if we de�ne g : (k; x; y) 7! k ln(1 + x) + (n � k) ln(1 + y) we havethat ln det(In + T ) � g(k; �x; �y). We want a bound on g(k; �x; �y) given thatk�x + (n � k)�y = 0 and k�x2 + (n � k)�y2 = n(n � 1)c2. For convenience wedenote this last quantity by S. Solving for �x and �y in terms of k we get�x = pSpn� kpnpk �y = �pS pkpnpn� k :Therefore the quantity we wish to estimate isg(k) = k ln 1 +pSpn� kpnpk !+ (n� k) ln 1�pS pkpnpn� k! :The function g(k) is of course de�ned for all real k 2 (0; n), but condition(10) ensures that k 2 [1; n�1]. We will show that g(k) is decreasing on (0; n)Indeed, di�erentiating we get (writing �x and �y for the above functions of k),g0(k) = ln(1 + �x)� ln(1 + �y)� 12(�x� �y) 11 + �x + 11 + �y! (12)To show that g0(k) < 0 we need only prove that1�x� �y Z �x�y dt1 + t < 12  11 + �x + 11 + �y! :



The maximal determinant of (�1)-matrices 9This is an immediate consequence of the strict convexity of the functiont 7! 1=(1 + t). Therefore, for all k 2 [1; n� 1], g(k) � g(1) whereg(1) = ln�1 +pSq1� 1=n�+ (n� 1) ln�1 +pSq1=n(n� 1)�= ln(1 + c(n� 1)) + (n� 1) ln(1� c) (13)The result follows immediately.Next we prove a result which is analogous to Lemma 1 of [Co2]. It isslightly more general than is needed here but the proof makes the resultnatural. De�ne the functionf : (n; h) 7! (n+ h� 1)(h� 1)(n�1) (14)Lemma 2.2 Suppose that M is a positive de�nite symmetric matrix of theform (h � 1)In + R 2 Mn(R), where h > 1 and R = (rij) has jrij j � 1 andrii = 1. Then1. j detM j � f(n; h).2. Equality holds if and only if jrij j = 1 8 1 � i; j � n and rankR = 1.Proof First notice that if M = (h� 1)In + R with R as in part 2, thendetM = (h� 1)n�1 + 1h� 1trace(R)�= (h� 1)n�1 + nh� 1�= (h� 1)n�1(h � 1 + n) = f(n; h)We prove the theorem by induction on the dimension n. The case n = 2is a straightforward computation. Assume then that n > 2 and that theresult holds for smaller values of n.Now detM = det((h � 1)In + R) = det(hIn + (R � In)) = hn det(In +h�1(R � In)) and the matrix T = h�1(R � In) satis�es the conditions ofLemma 2.1 with c2 = 1n(n�1)Pi 6=j r2ij=h2 � 1=h2. ThusdetM = hn det(In + T )



The maximal determinant of (�1)-matrices 10� hn �1 + n� 1h � (1� 1=h)n�1= (n+ h � 1)(h� 1)n�1= f(n; h) (15)It is clear that if jmij j > 1 for some pair (i; j), i 6= j, then c > 1=h andthe inequality becomes strict. Thus for equality to occur it is necessary thatjmijj = 1 for all 1 � i; j � n.After a suitable base change we may assume that the entries of the lastrow and the last column of M are all equal to 1, i.e. min = mnj = 1 for all1 � i; j � n.Now subtract 1=h times the last row from the �rst n � 1 rows and thensubtract 1=h times the last column from the �rst n�1 columns. The resultingmatrix is M 0 =  M1 00 h !;where M1 = (m0ij), 1 � i; j � n� 1, is a symmetric, positive de�nite matrix(of size (n� 1)� (n� 1)) such that(1� 1=h)�1m0ij = 8><>: h+ 1 if i = j1 if mij = 1�h+1h�1 if mij = �1 (16)Note that (h+1)=(h�1) > 1. Since detM = f(n; h) and detM = h �detM1we see that detM1 = f(n; h)h = (h+ n� 1)(h� 1)n�1h (17)On the other hand, applying the induction hypothesis to the matrix ~M1 =(1� 1=h)�1M1 we getdetM1 � (1� 1=h)n�1(h+ n� 1)hn�2 (18)= (h + n� 1)(h� 1)n�1h : (19)Thus det ~M1 = f(n�1; h+1). By induction this implies that ~M1 = hIn�1+ ~Rwhere rank ~R = 1 and j ~rij j = 1. Hence, by (16), we conclude that mij = 1for all 1 � i; j � n, i.e. P = (h� 1)In + R with rankR = 1 and jrij j = 1.The statements of Theorem A pertaining to the inequality follow fromLemma 2.2. We summarize this in the next result.



The maximal determinant of (�1)-matrices 11Corollary 2.3 Let N 2 Hn. Then j detN j � qf(n; n) with equality if andand only if NNT = (n� 1)In +R with jrij j = 1 and rankR = 1.Proof Instead of working with the (�1)-matrix N we consider the matrixM = NNT . If N is singular there is nothing to prove. If N is invertiblethen, because n is odd, it follows thatM = (n� 1)In +Ris symmetric, positive de�nite, with jrij j � 1. Since detM = (detN)2 thecorollary now follows from lemma 2.23 An in�nite family of maximal examplesIn this section we construct an in�nite family of (�1)-matrices which yieldequality in (2). Using the function � we can construct from these an in�nitefamily of (0; 1)-matrices which yield equality in (3). The construction is veryclose to one by A.E. Brouwer ([Bro]); we include the details for completeness.Recall that, by Proposition A, we are trying to construct, for some n �1 (mod 4), a matrix N 2 Hn such that NTN = (n� 1)In+ Jn. We will showthat this is possible whenever n = 2q2+2q+1 and q is an odd prime power.Down to work. Let q be an odd prime power. By the Paley construction([vLW]) there exists a Hadamard matrix H2q+2 of size 2q+2, which we mayassume is normalised; i.e., its �rst row and column are all 1s. We use H2q+2to de�ne matrices E and A, of dimension q�2q and (q+1)�2q respectively:after a suitable rearrangement of rows we may assume thatH2q+2 = 0BBBBBBBBBBBB@ 1 1 1:::11 1... ... E1 11 �1... ... A1 �1
1CCCCCCCCCCCCA :



The maximal determinant of (�1)-matrices 12The matrices E and A are (�1) matrices satisfying the following (where Jm;lis an m� l matrix of 1s): Jm;qE = �Jm;2q (20)EJ2q;m = �2Jq;m (21)Jm;q+1A = 0 (22)AJ2q;m = 0 (23)ETE +ATA = (2q + 2)I2q � J2q (24)Let C be a (q + 1)� (q + 1) conference matrix. That is, C is a f0;�1g-matrix with Cij = 0 () i = j, andCTC = CCT = qI: (25)Such a matrix can be constructed, for instance, by enumerating the elementsFq = fx1; x2; : : : ; xqg, the �eld with q elements, then adding a row andcolumn of 1s to the matrix (�(xi � xj))ni;j=1 and �nally changing the �rstentry on the diagonal back to 0. Here � : Fq ! f0;�1g is the quadraticcharacter.Let L be the q2 � q(q + 1) incidence matrix of points and lines in a�neF2q. The lines in F2q can be split into q + 1 parallel classes according to theirslope and two lines are disjoint if they are parallel, and meet in one point ifthey are not. Thus if we group the columns of L by their slope we �nd thatL is a f0; 1g-matrix satisfyingLTL = (Jq+1 � Iq+1)
 Jq + Iq+1 
 qIq (26)Jm;q2L = qJm;q(q+1): (27)We are now ready to give the example promised; de�neNq = 0BBBBBBBBBB@ 1... L(Iq+1 
 E)1�1... C 
A� Iq+1 
 Jq+1;2q�1
1CCCCCCCCCCA (28)



The maximal determinant of (�1)-matrices 13It is straightforward to check that Nq 2 H2q2+2q+1. First let's see that the�rst column of Nq has inner product 1 with each of the others; simply notethat J1;q2L(Iq 
E) = qJ1;q(q+1)(Iq+1 
E) (29)= J1;q+1 
 (qJ1;qE)= J1;q+1 
 (�qJ1;2q)= �qJ1;2q2+2qand �J1;(q+1)2(C 
A� Iq+1 
 Jq+1;2q) = �(J1;q+1C)
 (J1;q+1A) (30)+J1;q+1
 (q + 1)J1;2q= (q + 1)J1;2q2+2qNow let Mq be Nq with its �rst column removed. We want to provethat MTq Mq = (2q2 + 2q)I2q2+2q + J2q2+2q. We calculate as follows, using theproperties of E, A, C, and L established above in (20) through (30).MTq Mq = (Iq+1 
 ET )LTL(Iq+1 
E)+(CT 
AT � Iq+1 
 J2q;q+1)(C 
 A� Iq+1 
 Jq+1;2q)= (Iq+1 
 ET )((Jq+1 � Iq+1)
 Jq + Iq+1 
 qIq)(Iq+1 
E)+CTC 
ATA�C 
 (J2q;q+1A)�CT 
 (ATJq+1;2q)+Iq+1 
 (q + 1)J2q= (Jq+1 � Iq+1)
 (ETJqE) + Iq+1 
 qETE + qIq+1 
 (ATA)+Iq+1 
 (q + 1)J2q= (Jq+1 � Iq+1)
 (�ETJq;2q) + qIq+1 
 (ETE + ATA)+(q + 1)Iq 
 J2q= (Jq+1 � Iq+1)
 J2q + qIq+1 
 ((2q + 2)I2q � J2q)+(q + 1)Iq 
 J2q= qIq+1 
 ((2q + 2)I2q � J2q) + (qIq+1 + Jq+1)
 J2q= (2q2 + 2q)I2q2+2q + J2q2+2q:From this it follows immediately that NTq Nq = (2q2 + 2q)I2q2+2q+1 +J2q2+2q+1 and thence that Nq 2 B2q2+2q+1.



The maximal determinant of (�1)-matrices 144 The proof of Theorem CLet N 2 Bk, k = 2q2+ 2q+ 1, be one of the examples constructed section 3,i.e. we may assume NNT = (k � 1)Ik + Jk. Recall that each row and eachcolumn of such an N has q2 entries 1 and (q + 1)2 entries �1. LetB = 0BBBBBBBBBBBB@ 1 1:::1 1:::11... N N1�1... N �N�1
1CCCCCCCCCCCCA : (31)Then B 2 Hn where n = 2k+1 = 4q2+4q+3. We note that n � 3 (mod 4).It is easy to see thatBBT = 0BBBBBBBBBBBB@ n �4q � 1 � � � � 4q � 1 �1:::� 1�4q � 1... (n� 3)Ik + 3Jk �Jk�4q � 1�1... �Jk (n� 3)Ik + 3Jk�1

1CCCCCCCCCCCCA : (32)Let hn = s4 � 11677 (n� 3)n�7n7 (33)be the bound in (5) of Proposition C.Lemma 4.1 Assume that B is as in (31). Then1. dn = detBBT =(n� y � kt(4q + y + 1))(n+ k(3� y)� 2)(n+ 3k � 2)(n� 3)n�3;



The maximal determinant of (�1)-matrices 15where y = k5(k � 1) andt = 4q + y + 1n+ k(3� y)� 32. limn!1 detBpnn = pe�3:3. limn!1sdnhn = 12 � 711�3p7 � 0:34:Proof1. The formula for dn is obtained by �rst zeroing out the �J matrix inthe upper right hand corner of BBT and secondly zeroing out the �rstrow of the matrix that remains in the upper left hand corner.2. The critical term in the formula for dn occurs in the �rst factor. Wesee that limq!1 y = 1=5 andlimq!1 qt = 5=12The analysis of the remaining terms is straightforward.3. This follows directly from part 2 of this lemma and (1.2) of [Eh2]Theorem C is now a consequence of lemma 4.1.Acknowledgements: We would like to thank Bruce Solomon for providingus with examples of large determinant (0; 1)-matrices for many values ofn � 20.After having read a preprint of this paper, I. Kaplansky pointed outmore recent work on the problem and he provided us with the references[BKMS], [CKM], [GK], [Ka1], [KKS], [MK] and [Wh]. This improved thepaper considerably.
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