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AbstractIn this paper we consider the problem of reconstructing a subset A �Zn, upto translation, from the collection of its subsets of size k, given up to trans-lation (its k-deck). Results of Alon, Caro, Krasikov, and Roditty [1] showthat this is possible provided k > log2 n. Mnukhin [10] showed that everysubset ofZn of size k is reconstructible from its (k�1)-deck, provided k � 4.We show that when n is prime every subset of Zn is reconstructible from its3-deck; that for arbitrary n almost all subsets of Zn are reconstructible fromtheir 3-decks; and that for any n every subset of Zn is reconstructible fromits 9�(n)-deck, where �(n) is the number of distinct prime factors of n. Wealso comment on analogous questions for arbitrary groups, in particular thecube Zn2.Our approach is to generalize the problem to that of reconstructing ar-bitrary rational functions on Zn. We prove | by analysing the interactionbetween the ideal structure of the group ring QZn and the operation ofpointwise multiplication of functions | that with a suitable de�nition ofdeck every rational-valued function on Zn is reconstructible from its 9�(n)-deck.



1 Introduction.The reconstruction problem has a long history, started by the ReconstructionConjecture (in 1941) and the Edge Reconstruction Conjecture (in 1960).The very general problem is to reconstruct a combinatorial object (up toisomorphism) from the collection of isomorphism classes of its subobjects (seeBondy [2] and Bondy and Hemminger [3] for discussion of the two classicalproblems). Of course it is the word \isomorphism" in the last sentence whichmakes the problem interesting.In this paper we consider the problem of reconstructing subsets of thecyclic group Zn from their subsets. The information provided about a subsetof Zn is the multiset of isomorphism classes of its subsets of �xed size k,where two subsets are isomorphic if one subset is a translate of the otherin Zn. We call this collection the k-deck of a set in Zn. We say that a setA � Zn with jAj � k is reconstructible from its k-deck if any set B � Znhaving the same k-deck is a translate of A.Maybe the �rst thing to notice is that for jAj � k one can reconstructthe l-deck of A from the k-deck for any l � k. This is analogous to Kelly'slemma (see [2]). On the other hand if jAj < k then the k-deck of A is empty,and therefore A cannot be distinguished from any other subset of size strictlyless than k. It makes the statement of our theorems slightly easier if we usea de�nition of deck for which this issue does not arise. The de�nition weadopt below regards the deck as a function on multisets of size k from Zn.It is straightforward to check that this form of the k-deck can be determinedfrom the deck as de�ned above, provided jAj � k.De�nition 1 Let n be a positive integer and let X �Zn. The k-deck of Xis the function de�ned on multisets Y from Zn of size k bydX;k(Y ) = jfi 2Zn : supp(Y + i) � Xgj;where supp(Y ) is the set of elements of Y , considered without multiplicity.We say that X is reconstructible from its k-deck if we can deduce X up totranslation from its k-deck; in other words, we havedW;k � dX;k ) W = X + i; for some i 2Zn.More generally we say that a function of X is reconstructible from the k-deckof X if its value is a function of dX;k.1



Thus in Z12 the sets f1; 2; 4; 8g and f1; 2; 5; 7g are not distinguishablefrom their 2-decks, but are reconstructible from their 3-decks. In fact, anytwo cyclic di�erence sets in Zn will have the same 2-deck (viz., each possiblepair with multiplicity 1). Since there are non-equivalent cyclic di�erence setsfor arbitrarily large n (see [5]), there are subsets of Zn for in�nitely many nwhich are not reconstructible from their 2-decks. There are more elementaryexamples: A cannot be distinguished from �A by examining their 2-decks;A+B and A�B have the same 2-deck for any subsets A;B �Zn. This lastexample also shows that for su�ciently large n we cannot hope to reconstructeven up to re
ection by looking solely at the 2-deck.It is straightforward to check that the l-deck of X �Zn is reconstructiblefrom the k-deck for l � k.Alon, Caro, Krasikov and Roditty [1] consider the closely related problemof reconstructing subsets of Zn under the natural action of Dn. Two setsX;Y �Zn are Dn-isomorphic or isomorphic up to re
ection if X = Y + i orX = �Y + i for some i 2Zn. The k-deck of X �Zn given up to re
ection isthe function DX;k on multisets Y of size k fromZn, where DX;k(Y ) = dX;k(Y )if Y and �Y are isomorphic up to translation and DX;k(Y ) = dX;k(Y ) +dX;k(�Y ) otherwise. We say that X is reconstructible up to re
ection ifDX;k � DW;k implies that W and X are isomorphic up to re
ection.For n � 1, we de�ne f(n) to be the smallest k such that every X �Zn isreconstructible from its k-deck. We de�ne F (n) to be the smallest K suchthat every X � Zn is reconstructible up to re
ection from its k-deck; itis easily checked that F (n) � f(n). Alon, Caro, Krasikov and Roditty [1]proved that F (n) � log2 n+ 1;which implies that f(n) � log2 n+ 1:The example given above shows that, for su�ciently large n,f(n) � 3:The main result of this paper (Theorem 18) is thatf(n) � 9�(n);where �(n) is the number of distinct prime factors of n, while for p prime weprove (Theorem 3) that f(p) � 3;2



which is best possible for p su�ciently large. Thus f(n) does not tend to in-�nity with n. This suggests that either f(n) � C for some absolute constantC or else that f(n) is sensitive to the precise multiplicative structure of n.We conjecture that it is the latter.Conjecture 1 f(n) is unbounded as n tends to in�nity.Note that the bound in terms of �(n) impliesf(n) � (9 + o(1)) ln n= ln lnn;(see x22.12 of Hardy and Wright [7]; note that we use �(n) for their !(n))which is smaller than lnn for all su�ciently large n. Furthermore, for almostevery n, we have f(n) � (9 + o(1)) ln lnn(this follows immediately from Theorem 436 of Hardy and Wright [7]). Formost sets, however, we can do much better: we prove below (Theorem 4)that as n!1, almost every X �Zn is reconstructible from its 3-deck.These results also yield improvements on the result of Alon, Caro, Krasikovand Roditty [1]. It is proved in [12] thatF (n) � 2f(n):Thus the results above imply that for any nF (n) � 18�(n);while for p prime F (n) � 6:Furthermore, as n ! 1, almost every X � Zn is reconstructible up tore
ection from its 6-deck given up to re
ection.The way in which we prove our main result is somewhat unexpected. Wegeneralize the objects being reconstructed and the notion of k-deck. To beprecise we consider reconstructing arbitrary rational-valued functions on Zn,and base our results on a careful analysis of the ideal structure of the groupring QZn, and its interaction with the operation of pointwise multiplication.We begin in Section 2, however, with a simpler proof which implies thatsubsets of Zp for p prime are reconstructible from their 3-decks, and gives as3



a corollary that, as n tends to in�nity, almost all subsets of Zn are recon-structible from their 3-decks. In Section 3 we describe the basic setup forthe general proof and give some de�nitions that we shall need. In Section4 we prove the results we need concerning the ?-product operation, de�nedin Section 3. In Section 5 we prove the algebraic facts that we require, andthe proof of our main theorem is completed in Section 6. In Section 7 weconsider the action of Zn2 on itself and make some remarks on the situationfor arbitrary groups.We use �A throughout to refer to the characteristic function of a set A.We will frequently use the arithmetic of Zn without further comment, forinstance in subscripts.2 The case of prime n.In this section we present a rather quick and straightforward proof that if pis a prime then f(p) � 3. Though couched in slightly di�erent language thanour later general proof, it should make the later work more transparent.We start with two simple lemmas; the �rst of which allows us to identifya sequence which is a translate of (1; 0; 0; : : : ; 0), and the second of whichshows that the identi�cation can be made based only on the 3-deck.Lemma 1 If (ci)n�1i=0 is a sequence of real numbers satisfying the two condi-tions Pn�1i=0 c2i = 1, and Pn�1i=0 c3i = 1 then all the ci are zero, except for onewhich is 1.Proof. Since P c2i = 1 we have that jcij � 1 for i = 0; 1; : : : ; n�1. Hence wehave 1 = P c3i � P jcij3 � P c2i = 1. We must have therefore that jcij3 = c2ifor i = 0; 1; : : : ; n � 1, and hence that each ci belongs to f�1; 0; 1g. Thecondition on P c2i establishes that there is one non-zero coe�cient, and thecondition on P c3i shows that that coe�cient is 1.Lemma 2 For any k � n, any set A � Zn, and any multiset fi1; i2; : : : ; ikgfrom Zn we can reconstruct the size of (A � i1) \ (A � i2) \ � � � \ (A � ik)from the k-deck of A.Proof. This size is simply dA;k(fi1; i2; : : : ; ikg).These preliminaries out of the way, we turn to the main result of thissection: that for p prime we can reconstruct all subsets of Zp from their3-decks. 4



Theorem 3 If p is prime then any subset of Zp can be reconstructed fromits 3-deck.Proof. Consider a subset A � Zp and another, B say, with the same 3-deck as A. We associate with A the circulant matrixMA = [mij] de�ned bymij = �A(j � i), i; j = 0; 1; : : : ; n � 1. If we write Z for the fundamentalcirculant matrix Z = [zij], zij = �(i+1)j, then MA = Pj2A Zj. Since theeigenvalues of Z are exactly the pth roots of unity � ip, i = 0; 1; : : : ; p�1, (where�p = e2�i=p) it follows that MA has eigenvalues Pj2A � ijp , i = 0; 1; : : : ; p � 1.We distinguish two cases, according to whether MA is invertible or not.Case 1. MA is invertibleMA has (circulant) inverse �, with �rst row �i, i = 0; 1; : : : ; p � 1. Nowconsider the (circulant) matrixC = �MB, with �rst row ci, i = 0; 1; : : : ; p�1.We claim that (ci)n�1i=0 satis�es the conditions of Lemma 1 above. To showthis, we will prove that Pp�1j=0 crj , r = 2; 3, considered as functions of B, arereconstructible from the 3-deck of B. Knowing this, we conclude that theseexpressions must take on the same value as they do for �MA = I. Well,p�1Xi=0 c2i = p�1Xi=0 0@p�1Xj=0 �j�B(j � i)1A2= p�1Xj=0 p�1Xk=0 �j�k p�1Xi=0 �B(j � i)�B(k � i)= p�1Xj=0 p�1Xk=0 �j�kj(B � j) \ (B � k)j:By Lemma 2 the factor j(B � j) \ (B � k)j occuring in the innermost sumon the last line can be determined from the 2-deck of B. Hence the entiresum can be computed from the 2-deck of B (and hence from the 3-deck ofB). The sum of the c3i can be determined the same way:p�1Xi=0 c3i = p�1Xi=0 0@p�1Xj=0 �j�B(j � i)1A3= p�1Xj=0 p�1Xk=0 p�1Xl=0 �j�k�l p�1Xi=0 �B(j � i)�B(k � i)�B(l� i)= p�1Xj=0 p�1Xk=0 p�1Xl=0 �j�k�lj(B � j) \ (B � k) \ (B � l)j:5



The last expression is, by Lemma 2, reconstructible from the 3-deck of B.Thus all three expressions are determined by the 3-deck of B. Since thisis by hypothesis the same as the 3-deck of A, it must be that these expressiontake the same value for �MB as for �MA = I, i.e., each takes the value 1.Thus by Lemma 1 (ci)n�1i=0 is a standard unit vector, and so �MB = Zk forsome k in f0; 1; : : : ; p � 1g. Thus MB = ZkMA and B = A+ k. Thus A canbe reconstructed from its 3-deck.Case 2. MA is not invertibleFirst note that ; � Zn is the only subset whose 1-deck is identicallyzero, so we may suppose A 6= ;. Since the eigenvalues of A are the p values�i = Pj2A � ijp , for i = 0; 1; : : : ; p � 1, in order for A to be singular theremust exist i 2 f0; 1; 2; : : : ; p� 1g with �i = 0. Now �0 = jAj 6= 0 so wemust have 0 < i � p � 1. The minimal polynomial of � ip is mp(x) = Pp�1j=0 xjwhile Pj2A(� ip)j = 0. Thus we must have mp(x) j Pj2A xj. This implies thatA = f0; 1; : : : ; p� 1g, which is certainly reconstructible from its 3-deck.Using a similar method we can show that almost all subsets of Zn arereconstructible from their 3-decks.Theorem 4 The proportion of subsets of Zn which are not reconstructiblefrom their 3-decks tends to 0 as n tends to in�nity.Proof. The proof of Theorem 3 applies equally here, provided that the matrixMA is invertible. This requires that Pj2A � ijn 6= 0, i = 0; 1; : : : ; n � 1. If wewrite pA for the polynomialPj2A xj then we aim to show that the fraction ofsubsets A � Zn for which there exists i 2 f0; 1; : : : ; n� 1g with pA(� in) = 0tends to zero as n tends to in�nity.Kleitman's extension [9] of Erd}os's theorem [6] concerning the Littlewood-O�ord problem states that if (xi)ni=1 is collection of vectors from some normedspace with kxik � 1, i = 1; 2; : : : ; n, then at most � nbn=2c� of the subsetsums fPi2B xi : B � f1; 2; : : : ; ngg can belong to any �xed set of diameter1. In particular if we consider, for �xed i, the collection of complex numbersf� ijn : j = 0; 1; : : : ; n� 1g, at most � nbn=2c� sets A � Zn can have pA(� in) =Pj2A � ijn = 0. Thus for any �xed i at most � nbn=2c� subsets of Zn have � in as aroot of pA.To complete the proof note that the minimal polynomial of � in is thecyclotomic polynomial �n=(n;i) and if p(x) is any polynomial we have p(� in) = 0i� �n=(n;i) j p. Thus pA(� in) = 0 for some i i� pA(�dn) = 0 for some divisor6



d of n. Thus the fraction of subsets A � Zn with pA(� in) = 0 for some iis at most d(n)� nbn=2c�=2n where d(n) is the number of divisors of n. Since� nbn=2c�=2n = O(n�1=2) and d(n) = o(n�) for every � > 0 (see Theorem 315 ofHardy and Wright [7]) this proportion tends to zero as n tends to in�nity.It seems to us an exceptionally natural question to ask whether the resultof Theorem 4 holds for the 2-deck as well, to the extent that is possible.Conjecture 2 Almost every subset of Zn is reconstructible up to re
ectionfrom its 2-deck.3 The approach for general n.In this section we outline our approach to the problem of reconstructingsubsets of Zn when n is not prime.Alon, Caro, Krasikov and Roditty [1] deduce their result, that F (n) �log2 n+1, from a general result about reconstructing sets under the action ofpermutation groups. Several other authors, including Cameron [4], Mnukhin[10], and Pouzet [11] have looked at such reconstruction problems. Indeed,from one point of view every reconstruction problem concerns the action ofa group on the collection of combinatorial objects being reconstructed, andon their subobjects.De�nition 2 Let � be a permutation group acting on a set 
. We say twosets X;Y � 
 are isomorphic if gX = Y for some g 2 �. For X � 
, thek-deck of X is the function de�ned on multisets from 
 of size k bydX;k(Y ) = jfg 2 � : supp(gY ) � Xgj:We say that � is reconstructible from its k-deck ifdX;k � dY;k ) X = gY for some g 2 �:Thus the Edge Reconstruction conjecture claims that every subset E ofX(2) of size 4 or more is reconstructible from its (jEj � 1)-deck under theinduced action of the symmetric group �X on X(2). Mnukhin [10] deals with7



the action of Zn on itself, and proves that all k-subsets of Zn are recon-stuctible from their (k � 1)-decks, provided k � 4.Our approach is to consider not just subsets of G but the larger class ofrational-valued functions on the group, where we associate S � G with itscharacteristic function �S : G ! f0; 1g. Clearly there is an action of G onthis set of functions given by g:f(x) = f(g�1x)for g 2 G and f : G! Q . Note that the set of rational-valued functions onG under the action of G can be identi�ed with the elements of the group ringQG. Consideration of this larger class requires us to re�ne our notion of deck.Since we can think of elements of QZn as generalizations of multisets fromZn, it is natural that the deck of � 2 QZn should be a function de�ned onthe set of all multisets fromZn of size k, agreeing with our earlier conventionabout the k-deck for subsets.De�nition 3 If f 2 QG and k � 1 the k-deck of f is the function de�nedon multisets of G of size k bydf;k(Y ) = Xg2G Yx2gY f(x):We say that f is reconstructible from its k-deck ifdf;k � df 0 ;k ) f 0 = g:f for some g 2 G:We de�ne rQ(G) to be the smallest k such that every function f : G ! Qis reconstructible from its k-deck. Again we loosely talk of an expressioninvolving f being reconstructible from the k-deck if any two elements of QGwith the same k-deck have the same value for that expression.De�nition 4 If f 2 QG and f 0 is another element of the group ring withthe property that df;k � df 0;k and yet there is no g 2 G with f 0 = g:f thenwe say that f 0 is a k-imposter for f .Remark 1 There is another plausible notion of k-deck for elements of QG.One could consider the collection of all partial functions obtained by restrict-ing f to subsets of G of size k. The deck de�ned above is reconstructiblefrom such a deck, thus the results we prove apply just as well to this notionof deck. 8



Remark 2 Note that, for S � G, we have d�S ;k � dS;k.Remark 3 In the case G =Zn we have, for I = fi1; i2; : : : ; ikg a multiset ofsize k, df;k(I) = n�1Xj=0 f(j + i1)f(j + i2) : : : f(j + ik):We will eventually show that every element of the group ring QZn canbe reconstructed from its 9�(n)-deck; in the rest of this section we discussQZn and its ideals.The �rst thing to notice is that the group ring QZn is isomorphic to thering Qn = Q [x]=(xn � 1). The action of Zn on QZn is isomorphic to theaction of Zn on Qn given by i:� = xi�. We write (abusing notation slightly)� = Pn�1j=0 ajxj for a typical element of Qn, where properly we should indicatethat we are dealing with equivalence classes of polynomials.Qn is of course a vector space overQ in a natural way; is a subring of Cn =C [x]=(xn�1); and comes equipped with the inner product h�; �i = Pn�1j=0 ajbj,with respect to which the collection fxj : j = 0; 1; : : : ; n� 1g forms an or-thonormal basis. When we discuss Qn we will think of the indices as elementsof Zn; in particular we will perform all arithmetic on subscripts in Zn.One way we will investigateQn is through the Fourier transform, which wewill consider in Section 5. This requires us to widen our viewpoint somewhat,since the natural domain for the Fourier transform is Cn (which is of coursethe same thing as CZn). The Fourier transform is an isomorphism betweenCn and the ring C n , equipped with pointwise multiplication.The support of an element � = Pn�1j=0 ajxj 2 Qn is the set supp(�) =fj : aj 6= 0g � Zn. Similarly, the support of a sequence is the set of placeswhere it takes a non-zero value, and the support of a multiset is the set ofits elements considered without multiplicity.We will want to consider the following operation (of pointwise multipli-cation of coe�cients) on the ring Qn.De�nition 5 Given two elements of Qn de�ne their star product to be0@n�1Xj=0 ajxj1A ? 0@n�1Xj=0 bjxj1A = 0@n�1Xj=0 ajbjxj1A :In particular we will consider expressions of the following form. Given a9



multiset I = fi1; i2; : : : ; ilg from f0; 1; : : : ; n� 1g de�ne�I = (xi1�) ? (xi2�) ? � � � ? (xil�):A linear combination of such expressions, e.g., p(�) = PI2I �I�I , we call a?-polynomial. The degree of p is de�ned to be maxfjIj : I 2 Ig. We are alsointerested in the linear map S : Qn ! Q de�ned byS 0@n�1Xj=0 ajxj1A = n�1Xj=0 ajand the compositions S � p for ?-polynomials p. Therefore de�ne the ?-termcorresponding to the multiset I = fi1; i2; : : : ; ilg from f0; : : : ; n� 1g to bethe function SI : Qn ! Q given by SI(�) = S(�I). ThusSfi1;i2;:::;ikg = n�1Xj=0 aj�i1aj�i2 : : : aj�ik :Similarly de�ne a ?-expression to be the composition of S and a ?-polynomial.The degree of a ?-expression is de�ned to be maxfjIj : I 2 Ig.De�nition 6 Given ideals M , N � Qn we de�ne their ?-product M ? N tobe the ideal generated by M and N together with the set of all ?-productsof one element from M and one from N . Note that M ? N contains theideal generated by fm ? n : m 2 M;n 2 Ng, but that the two ideals neednot be equal. The kth ?-power of M is the ideal M?k = M?(k�1) ? M =M ? M ? � � � ? M , where k factors of M appear. Note that if M = (�)then M?k = fp(�) : p is a ?-polynomial with deg(p) � kg. These de�ni-tions have natural generalizations to Cn, which we adopt without furthercomment.In our proof of the main theorem, Theorem 18, we will show that given� 2 Qn we can �nd a ?-polynomial p such that p(�) = 1 2 Qn, and thatmoreover it can be done in such a way that p has reasonably low degree; atmost l say. Then we will show that the values of ?-expressions of degree atmost k are reconstructible from the k-deck. This will enable us to prove, witha little work, that if � 2 Q n has d�;3l � d�;3l then we must have p(�) = xifor some i 2 f0; : : : ; n� 1g, and then that � = xi�.10



4 ?-expressions.The main result we require concerning ?-expressions is simply the fact that if� and � are elements of Cn with d�;k � d�;k then all ?-expressions of degreeat most k take the same value at � as at �.Lemma 5 Suppose k is an integer with k � 1 and �; � 2 Cn haved�;k � d�;k:If f = XI2I �ISIis a ?-expression of degree at most k then f(�) = f(�).Proof. It is clearly su�cient to prove the result when f is a ?-term; f = SIwith I = fi1; i2; : : : ; ilg, l � k. Then we simply havef(�) = n�1Xj=0 aj�i1aj�i2 : : : aj�il= d�;l(f�i1;�i2; : : : ;�ilg)= d�;l(f�i1;�i2; : : : ;�ilg)= f(�)The next result allows us to identify, by means of ?-expressions, the ele-ments xi, i 2 f0; : : : ; n� 1g, of Qn.Lemma 6 Suppose � 2 Qn satis�esSf0;0g(�) = Sf0;0;0g(�) = 1:Then for some i 2 f0; : : : ; n� 1g we have � = xi.Proof. This is identical with Lemma 1.Lemma 7 Let p, q be ?-polynomials and f be a ?-expression. Then p � q isa ?-polynomial of degree at most deg(p) deg(q) and f � p is a ?-expression ofdegree at most deg(f) deg(p). 11



Proof. Straightforward calculation.The next two results are the key to our approach; they give, respectively,a simple combinatorial condition and a simple algebraic condition on � 2 Qnwhich guarantee its reconstructibility,Proposition 8 Suppose that � = Pn�1j=0 ajxj is an element of Qn and thatthere exists a ?-polynomial p such that p(�) = 1. If deg(p) � k and � 2 Qnhas d�;3k � d�;3k then � = xi� for some i 2 f0; : : : ; n� 1g.Proof. Let � = p(�). Applying the ?-term Sf0;0;0g to p we get (by Lemma 7)a ?-expression f = Sf0;0;0g � p of degree at most 3k. By Lemma 5, we haveSf0;0;0g(�) = f(�) = f(�) = Sf0;0;0g(1) = 1. Similarly we have Sf0;0g(�) = 1.By Lemma 6 it must be the case that � = xi for some i 2 f0; : : : ; n � 1g.Now, for j = 0; : : : ; n�1, consider the function on Qn given by � 7! hxj�; �i.This function is some ?-expression gj of degree at most 3k (of course, in factat most k + 1). Hence, writing (bj)n�1j=0 for the coe�cients of �,bi+j = Dxjxi; �E= Dxj�; �E= gj(�)= gj(�)= Dxj1; �E= aj:In other words, � = xi�.Theorem 9 If � 2 Qn generates the ideal J = (�) and J?k = Qn then thereare no (3k)-imposters for �.Proof. Since 1 2 Qn = J?k there exists some ?-polynomial p of degree ksuch that p(�) = 1. By Proposition 8 any � 2 Cn with d�;3k � d�;3k must beof the form � = xi� for some i 2 f0; : : : ; n� 1g.In the next section we will work on determining the minimal k for whichthe conditions of Theorem 9 hold, and we will deduce the main result insection 6. 12



5 Algebraic BackgroundRecall that we are chie
y interested in the ring Qn = Q [x]=(xn � 1) andthat in order to understand its ideals better we will also consider the ring C nwith pointwise multiplication. We have seen in Theorem 9 that any element� 2 Qn which has the property that (�)?k = Qn is reconstructible from its3k-deck; the faster the ?-powers of (�) grow, the easier it is to reconstruct�. In this section we analyse the behaviour of ?-powers of arbitrary ideals ofQn, using the Fourier transform as our chief tool.First note that if � 2 C is an nth root of unity then the evaluation map� 7! �(�) is well de�ned for � 2 Cn. Analogously we may talk about p 2 C [x]dividing � 2 Cn provided p j xn � 1. We write �n for e2�i=n.Proposition 10 The map F : Cn ! C n de�ned byF(�) = ��(�jn)�n�1j=0is a ring isomorphism with inverseF�1 �(zj)n�1j=0 � = n�1Xj=0 0@ 1n Xr2f0;::: ;n�1g zr��rjn 1Axj: (1)In order to make progress we will need to understand the ideals of Cn andC n . The basic facts are recorded in the following de�nition and proposition.De�nition 7 LetZS = n(fi)n�1i=0 2 C n : fi = 0 8i 2 SoNZS = ZZnnS = n(fi)n�1i=0 2 C n : fi = 0 8i 62 So:Proposition 11 Cn (and hence C n ) is a principal ideal domain. Cn has 2nideals, indexed by subsets of the set f� in : i = 0; : : : ; n� 1g of nth roots ofunity. The subset T corresponds to the ideal MT = �Q�jn2T (x � �jn)�. Theideals of C n are indexed by subsets of f0; : : : ; n�1g. A subset S � f0; : : : ; n�1g corresponds to the ideal ZS of those vectors whose jth coordinate is 0 foreach j 2 S. The Fourier transform maps the ideal MT to the ideal Zfj : �jn2Tg.13



Proof. The ideals of Cn = C [x]=(xn � 1) are in 1-1 correspondence withthe ideals J of C [x] with (xn � 1) � J � C [x]. Since C [x] is a principalideal domain these correspond to factors of xn � 1. Since C [x] is a uniquefactorization domain these are exactly all possible products of irreduciblefactors of xn � 1, viz., the polynomials x � � in for i 2 f0; : : : ; n � 1g. Thedescription of the ideals of C n and the correspondence between MT andZfj : �jn2Tg follows from noting that F(p(x))(j) = 0 i� (x� �jn) j p(x).The reason that reconstructing elements of Qn is easier than reconstruct-ing arbitrary elements of Cn is that the ideal structure of Qn is more inter-esting than that of Cn; Proposition 12 records the facts we require. We alsoneed a little bit of notation.De�nition 8 Let F = Q [�n] be the splitting �eld of xn � 1 over Q . De�ne�n(x) =Y�0 (x� � 0)where the product is over the set of all primitive nth roots of unity in F . Wewrite �D, where D is a subset of the divisors of n, for the product Qd2D �d.De�nition 9 If D is a subset of fd : d j ng we setS(D) = fj 2Zn : (n; j) = n=d for some d 2 Dgand Sc(D) =Zn n S(D) = fj 2Zn : n=(n; j) 62 Dg:Proposition 12� For all n � 1 the polynomial �n has integer coe�cients. �n is irreduciblein Q [x] and has degree �(n), the Euler totient function counting the numberof residues mod n that are coprime to n.� The automorphisms of F over Q are the maps �n 7! �jn for j 2 f0; : : : ; n�1g with (j; n) = 1. The polynomial xn � 1 factorizes in Q [x] asxn � 1 =Ydjn �d(x):14



� The zeros of �d, for d a divisor of n are given by �d(�jn) = 0 i� (n; j) = n=d.� For any D � fd : d j ng the characteristic function of S(D) is in F(Qn).The Fourier transform of the ideal (�D) � Qn is F(Qn) \ ZS(D).Proof. Most parts are standard facts; see e.g. Hungerford [8]. The lastsection maybe requires some remark. Note that the expressions appearing inthe calculation of F�1(�S(D)) are clearly invariant under the automorphismgroup of F over Q , and hence, since F is a Galois extension of Q , are in Q .For the second part, notice that we clearly have F((�D)) � F(Qn) \ ZS(D).To show the reverse inclusion consider f 2 F(Qn)\ZS(D) and let � = F�1(f).Clearly � 2 Qn. Since f 2 ZS(D), for each d 2 D we have �(�n=dn ) = �(�d) =0; but the minimal polynomial of �d is �d, hence �d j �. Thus �D j � and� 2 (�D).To have our project succeed we must be able to bound the k for whichI?k = Qn, where I is an ideal of Qn. (At least when such a k exists; wewill see later that possible periodicity in I may restrict all the ?-powers ofI to less than all of Qn.) We will then be able to use Theorem 9 to obtainour main result. The next result describes the e�ect of the ?-product on theFourier transforms of ideals.Lemma 13 Let I, J � Qn be ideals with I = (�D) and J = (�E). Then theFourier transform of the ?-product of I and J is given byF(I ? J) = F(Qn) \ NZSc(D)[Sc(E)[(Sc(D)+Sc(E)):Proof. First notice that F�1 maps the pointwise product of elements of C nto the polynomial product of their images. Now F is essentially the sameas F�1 { it simply uses evaluation at ��in rather than � in. Thus let us de�ne? : C n � C n ! C n by(zi)n�1i=0 ? (wi)n�1i=0 = 0@n Xj+k=i zjwk1An�1i=0 :A straightforward calculation shows that if �; � 2 Cn with F(�) = a andF(�) = b then F(� ? �) = a ? b.Now consider ideals I, J , as in the statement of the Lemma. Let S =Sc(D)[ Sc(E)[ (Sc(D) + Sc(E)). By Proposition 12 we have �Sc(D) 2 F(I)and �Sc(E) 2 F(J) and thus �Sc(D) ? �Sc(E) 2 F(I ? J). Now supp(�Sc(D) +15



�Sc(E)+�Sc(D?�Sc(E)) = S so, since we have exhibited an element of F(I ?J)which is non-zero on all of S we have F(I ? J) � F(Qn) \ NZS.To prove the reverse inclusion note that whenever i 62 S and a 2 F(I),b 2 F(J) every term of the sum Pj+k=i ajbk is zero, and thus (a ? b)i = 0.Moreover ai = bi = 0, so the ith coordinate is zero for every element ofF(I ? J). Thus F(I ? J) � F(Qn) \ NZS.Since Sc(D) = nrnd : r 2 Z�n; d 2Zn n So, we can get a handle on thesets appearing in the statement of Lemma 13 provided we can understandthe sets Z�n, Z�n +Z�n, Z�n +Z�n +Z�n; : : : . The next lemma establishes theessential facts.Lemma 14 If n is odd then Z�n [ (Z�n +Z�n) = Zn. If n is even then Z�n [(Z�n+Z�n) [ (Z�n+Z�n+Z�n) =Zn.Proof. By the Chinese remainder theorem we know that if n = pk11 : : : pkrr isthe prime factorization of n thenZn �= Lri=1Zpkii . In this representationZ�n isthe subset of elements for which the ith coordinate belongs to Z�pi for every i.To prove the lemma for odd values if n it su�ces to note thatZ�pi+Z�pi =Zpifor all odd prime powers pi. This is straightforward. For even values of nwe are limited by the fact that Z�2k +Z�2k = 2Z2k. Thus if i � p (mod 2p),where p is an odd prime dividing n, then i 62 Z�n [ (Z�n+Z�n). However it iseasy to check that these are the only missing values. Since these are all oddresidues we have that i 62 Z�n [ (Z�n +Z�n) implies i � 1 2 Z�n [ (Z�n +Z�n).Hence, since 1 2Z�n, we have Z�n [ (Z�n+Z�n) [ (Z�n+Z�n+Z�n) =Zn.One issue we have not touched on so far is that of periodicity. It clearlya�ects our approach since if � is a periodic element of Qn then all ?-powersof (�) are also periodic; in particular no ?-power of (�) contains 1. To makeour discussion easier let us give names to the fundamental periodic elementsof Qn: let �n;d = (1 + xd + x2d + � � � + xn�d) where d is a divisor of n.Clearly � = xd� i� �n;d j �. Note that since xn � 1 = (xd � 1)�n;d we have�n;d = �fe : ejn and e6 jdg.De�nition 10 We say that � 2 Qn is periodic if � = xd� for some divisor dof n with d 6= n. We say that an ideal I � Qn is periodic if there exists somed 6= n, d j n such that � = xd� for all � 2 I.Lemma 15 The ideal I = (�) is periodic i� � is periodic. �D (and hence(�D)) is periodic i� D contains some top face of the lattice of divisors of n.16



In other words �D is periodic i� there exists some prime p dividing n suchthat fpme : e j n=pmg � D where pm is the highest power of p dividing n.Proof. For the �rst part note that I being periodic implies that every elementof I is periodic, in particular � is periodic. Conversely, if � = xd� then�n;d j � and hence �n;d j � for all � 2 I.Suppose now that �D is periodic with period d; then it is also periodicwith period e for any d j e j n. In particular it is periodic with period n=pfor some prime p dividing n. So �n;n=p j �D, hence fd j n : d 6 j n=pg � D.This set is the top face of the divisor lattice of n in the p direction.Theorem 16 If � 2 Qn and n has m distinct prime factors then either � isperiodic or (�)?3m = Qn.Proof. Suppose � is not periodic. Then, by Lemma 15, we have (�) = (�D)for some D � fd : d j ng such that for all primes p j n there is some divisorf of n with f 62 D and p 6 j n=f . Note that n=f 2 Sc(D). This impliesthat we can �nd a subset S0 of Sc(D) which has at most m elements andhas greatest common divisor 1 { simply take one \missing" element fromeach top face. Now, by the gcd condition, we can form any element of Znby taking a linear combination of the elements of S 0 with coe�cients in Zn.Let i 2 Zn be written as i = Ps2S0 css, where the cs lie in Zn. We can writeeach cs in turn as the sum of at most three terms from Z�n (by Lemma 14).Hence, sinceZ�n[ (Z�n+Z�n)[ (Z�n+Z�n+Z�n) =Zn we can form any elementof Zn by summing at most 3m terms, each of the form rs where r 2Z�n ands 2 S0. Since Sc(D) is closed under multiplication by elements of Z�n thismeans that every element of Zn can be written as a sum of at most 3m termsfrom Sc(D). Hence, by Lemma 13, (�)?3m = Qn.6 The main result.In this section we tie together the strands from Sections 3, 4, and 5 to proveour main results.Proposition 17 If � 2 Qn is not periodic and n hasm distinct prime factorsthen there are no 9m-imposters for �.Proof. By Theorem 16 we know that (�)?3m = Qn. Then Proposition 8 tellsus that there are no (9m)-imposters for �.17



Theorem 18 No element of Qn, and hence in particular no two subset ofZn, has a 9m-imposter, where m is the number of distinct prime factors ofn.Proof. Proposition 17 deals e�ectively with the non-periodic elements of Qn.We can detect periodicity of � 2 Qn (and indeed the minimal period) from its2-deck; note that jSf0;dg(�)j � Sf0;0g(�), by Cauchy-Schwartz, with equalityi� � = xd�. Moreover, if � is periodic with period d we can construct thek-deck of � considered as an element of Qd from its k-deck in Qn. Thus if�; � 2 Qn are two periodic elements with the same minimal period d andd�;9m � d�;9m then the induced elements �0; �0 2 Qd have d�0;9m � d�0;9m, andmoreover �0 and � 0 are non-periodic. Thus, for some i0 2 f0; 1; : : : ; d� 1g,�0 = xi0�0. This implies that � = xi� for all i � i0 (mod d). Thus thetheorem is proved.Corollary 19 For all n we haverQ(Zn) � (9 + o(1)) ln n= ln lnnand for almost all n rQ(Zn) � (9 + o(1)) ln lnn:Proof. It is known that �(n) � (1 + o(1)) ln n= ln lnn, and that for almostall n we have �(n) � (1 + o(1)) ln lnn; see for instance Hardy and Wright[7], x22.12 and Theorem 436 respectively.7 Final RemarksThe problems considered to this point have natural analogues for other �niteAbelian groups. We make the natural de�nitions concerning decks and re-constructing. We write r(G) for the reconstruction number of G; the smallestk such that every subset of G is reconstructible from its k-deck.The most natural abelian group to consider after Zn is the cube Zn2. Itis a straightforward consequence of Alon, Caro, Krasikov, and Roditty's [1]Corollary 2.5 that r(Z2n) � log2(2n) = n. Our techniques, in particular ouruse of pointwise multiplication and the Fourier transform, do not seem toproduce a better result. If we let I be the ideal in QZn2 consisting of the18



inverse Fourier transforms of elements of QZn2 supported on the singletonsets ffig : i = 1; 2; : : : ; ng then I is not a periodic ideal, and yet no earlier?-power of I than the nth is the whole group ring QZn2.The above remark lends some support to the following conjecture.Conjecture 3 r(Zn2) = rQ(Zn2 ) = n.For other Abelian groups it seems likely that a similar bound holds; wesuspect that if n1; : : : ; nk are prime powers thenr(Zn1 � � � � �Znk) � ck;for some absolute constant c.When we come to consider non-Abelian groups it seems that our methodsmust change somewhat. It is possible however, for an arbitrary �nite groupG, to prove that r(G) � cL(QG), where c is a constant and L(QG) is thelength of the longest increasing chain of ideals in QG (see [12]).Finally we make what seems to be an exceptionally natural conjecture.Conjecture 4 For all �nite groups G and Hr(G �H) � r(G)r(H):References[1] N. Alon, Y. Caro, I. Krasikov and Y. Roditty, Combinatorial reconstruc-tion problems, J. Comb. Theory, Ser. B 47 (1989), 153{161[2] J.A. Bondy, A graph reconstructor's manual, in Surveys in Combina-torics, 1991, ed. A.D. Keedwell, LMS Lecture Note Series 166, 221{252[3] J.A. Bondy and R.L. Hemminger, Graph reconstruction { a survey, J.Graph Theory 1 (1977), 227{268[4] P.J. Cameron, Stories from the age of reconstruction, Festschrift forC. St. J. A. Nash-Williams, Congr. Numer. 113 (1996), 31{41[5] C.J. Colbourn and J.H. Dinitz (eds.), The CRC Handbook of Combina-torial Designs, CRC Press, Boca Raton, 1996, xviii + 753pp.19
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