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Basic Ideas and TheoryInverse ProblemsConclusions
The Lefkowitz ModelMatrix Theory

States, Age and Stage

About States:

Assume at any one time members of a time varying population

are classi�ed into one of s mutually exclusive states, indicated

by the index i , whence population vector is

n (t) = (n1 (t) , . . . , ns (t)) ≡ [n1 (t) , . . . , ns (t)]T

All individuals experience the same environment.

The e�ects of the population on the environment can be

written as the sum of the contributions of the individuals.

Candidates: age, size, instars, genders, geographical locales

(patches) and and meaningful combination of these states.
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Basic Ideas and TheoryInverse ProblemsConclusions
The Lefkowitz ModelMatrix Theory

Linear Form of Classic Examples

Projection Model:

n (t + 1) = Atn (t)

where At = [ai ,j ] is s × s projection matrix.

Note: coe�cients could vary with time. If not, this is a

stationary (or time-invariant) model and we simply write

At = A.

Coe�cients could even be non-local: e.g., birth rates could be

dependent on a carrying capacity of environment. Ditto other

forms of recruitment.
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Leslie Model (~1945)

Population is divided into discrete age groups, resulting in

projection matrix

A =


F1 F2 · · · Fs−1 Fs
P1 0 · · · 0

0 P2
. . .

...
. . . 0 0

Ps−1 0

 .

Here Fi is the per-capita fertility of age class i and Pj is the

survival rate of age class j . Clearly 0 ≤ Pj ≤ 1.

Linearity or stationarity not required.

Example: A =

 0 e−bN 5e−bN

.3 0 0

0 0.5 0

, where N = n1 + n2.
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Lefkovitch Model (~1962)

Population is divided into discrete stages, resulting in a very general

projection matrix A = [ai ,j ]s,s .

Here one chooses a projection interval (t, t + 1) representing
the time states of the model.

Linearity or stationarity not required.

The entry ai ,j represents a rate (or probability) of passage

from stage i to stage j . (Hence ai ,j ≥ 0.)

The matrix A is equivalent to a (directed) life cycle graph for

the population.
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The Lefkowitz ModelMatrix Theory

Tensor Notation

Tensor (Kronecker, direct) Product:

Given m × n matrix A = [ai ,j ] and p × q matrix B = [bi ,j ], the
tensor product of A and B is the mp × nq block matrix

A⊗ B =


a1,1B a1,2B · · · a1,nB

a2,1B a2,2B · · · a2,nB
...

. . .
...

am,1B am,2B · · · am,1B

 .

There are lots of algebra laws, e.g.,

(A⊗ (βB + γC ) = βA⊗ B + γA⊗ C and interesting

properties, e.g., eigenvalues of A⊗ B are just the products of

eigenvalues of A and B , etc., etc., that we won't need.

Matlab knows tensors: C = kron(A,B) does the trick.

Thomas Shores Department of Mathematics University of NebraskaInverse Methods For Time Series
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Tensors as Bookkeeper

Vec or Co(concatenate) Notion:

Given m × n matrix A = [ai ,j ] = [a1, a2, . . . , an] as a row of

columns,

vec (A) =


a1
a2
...

an

 .

There are more algebra laws, e.g.,

vec (αA + βB) = α vec (A) + β vec (B).

Key Bookkeeping Property:

vec (AXB) =
(
BT ⊗ A

)
vec (X ) .

Matlab knows vec. The command x = vec(X) does the trick.
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Basic Ideas and TheoryInverse ProblemsConclusions
Formulation and ExamplesSome Methodologies

Formulation

The Problems:

Forward (Direct) Problem: Given a question, �nd the answer.

E.g., given a projection matrix A and present system state

n (t), �nd the next state of the system n (t + 1). Solution:
n (t + 1) = An (t).

Inverse Problem: Given an answer, �nd the question. E.g.,

given a projection matrix A and present system state n (t),
�nd the previous state of the system n (t − 1). Solution:
n (t − 1) = A−1n (t) (maybe!)

Parameter Identi�cation: a special class of inverse problems

that �nds parameters of a model, e.g., given many system

states n (ti ), �nd the projection matrix. This is tougher.

Thomas Shores Department of Mathematics University of NebraskaInverse Methods For Time Series
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Formulation and ExamplesSome Methodologies

Nature of Inverse Problems

Question:

Given a two-way process with �answers� at both ends, what makes

one direction �direct� and the other �inverse�?

Forward problems are generally well-posed, that is, have a

solution, it is unique and it varies continuously with the

parameters of the problem

Inverse problems are generally ill-posed, i.e., not well-posed,

and all three possible failings occur in the simple inverse

problem of solving Ax = b for the unknown x , given A,b.
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A Generic Example

Postulate s × s projection matrix A for a stage structured

population, together with data (possibly replicated and averaged)

for the states n (1) ,n (2) , . . . ,n (s + 1). We have prior knowledge

of A: all entries are nonnegative and certain entries are zero.

Frame the problem as follows:

An (k) = n (k + 1), k = 1, . . . , s.

Set M = [n (1) ,n (2) , . . . ,n (s)] and
P = [n (2) ,n (2) , . . . ,n (s + 1)].

Recast problem as AM = P = IsAN.

Tensor bookkeeping:

vec (IsAM) =
(
MT ⊗ Is

)
vec (A) = vec (P) ≡ d.

Delete zero variables from vec (A) and columns of MT ⊗ Is .

Rename resulting vectors, matrix as m,G and rhs d. System

takes form Gm = d, with G p × q, typically p > q.
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A Working Example

Taken from Caswell's text, in turn from a referenced paper that I

can't �nd by Kaplan and Caswell-Chen: the sugarbeet nematode

Heterodera schachtii has �ve stages (eggs, juvenile J2, J3, J4 and

adult.) Following data is density of nematodes (per 60cc of soil) for

stages J2, J3+J4, adult, averaged over four replicates, measured

every two days:

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

5.32 0.33 2.41 2.06 1.70 3.16

24.84 18.16 17.14 3.25 2.08 11.23

115.50 167.16 159.25 112.87 132.62 149.62

This population leads to a population projection matrix

A =

 P1 0 F3
G1 P2

G2 P3


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Least Squares (?)
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What we do:

Of course, with much data we will almost certainly have an

inconsistent system Gm = d. The problem is therefore ill-posed.

Recouch the (probably) ill-posed problem Gm = d as the

optimization problem

min
m

‖Gm− d‖22 .

This is equivalent to solving the normal equations

GTGm = GTd

which, ASSUMING G has full column rank, has a unique

solution m∗.
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More Least Squares:

Least squares has many pleasant statistical properties, e.g., if

the data errors are i.i.d. normal r.v.'s, then entries of m∗ are
normally distributed and E [m∗] = mtrue , where

Gmtrue = dtrue .

Given that the variance of data error is σ2, one can form the

chi-square statistic

χ2
obs = ‖Gm− d‖22 /σ2

and this turns out to be a r.v. with a χ2 distribution with

m − n (row number of G minus column number) degrees of

freedom.

The probability of obtaining a χ2 value as large or larger than

the observed number is the p-value p =
∫∞
χ2
obs

fχ2 (x) dx which

is a uniformly distributed r.v.

Thomas Shores Department of Mathematics University of NebraskaInverse Methods For Time Series
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Wood's Quadratic Programming Method

Why cast aspersions on least squares? Inter alia, the good features

don't apply: take a look at G . Moreover, it may result in negative

entries in the projection matrix!

Fix the Negativity:

Recast the problem as constrained optimization problem:

min
m

‖Gm− d‖22

subject to constraints Cm ≥ b where the constaints ensure

conditions like m ≥ 0 and Pi + Gi ≤ 1.

Solving a least squares problem only by adding constraints is

one kind of regularization strategy. Sometimes it works well,

but there are examples where it's awful.

Now let's run the script WorkingExample.m.
Thomas Shores Department of Mathematics University of NebraskaInverse Methods For Time Series
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Regularized Least Squares
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Suppose that our problem had been severely poorly conditioned or

even rank de�cient.

What to do?

Now even the problem minm ‖Gm− d‖22 gets us into trouble, with

or without constraints.

Tikhonov regularization: add a regularizing term that makes

the problem well posed:

min ‖Gm− d‖22 + α2 ‖L (m−m0)‖22 .

Here α has to be chosen and L is a �smoothing� matrix like

L = I (zeroth order Tikhonov regularization) or matrices which

mimic discretized �rst or second derivatives (higher order

regularization. There's a Bayesian �avor here, esp. if m0 6= 0.)

Note: statisticians are somewhat wary of this regularization as

that it introduces bias into model estimates.

Thomas Shores Department of Mathematics University of NebraskaInverse Methods For Time Series
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Determination of α

Thomas Shores Department of Mathematics University of NebraskaInverse Methods For Time Series



Basic Ideas and TheoryInverse ProblemsConclusions
Formulation and ExamplesSome Methodologies

To choose an α:

Some of the principal options:

The L-curve: do a loglog plot of ‖Gmα − d‖22 vs ‖Lmα‖22 and

look for the α that gives a �corner� value that balances these

two terms.

(Morozov's discrepancy principle) Choose α so that the mis�t

‖Gmα − d‖2 is the same size as the data noise ‖δd‖2
GCV (comes from statistical �leave-one-out� cross validation):

Leave out one data point and use model to predict it. Sum

these up and choose regularization parameter α that minimizes

the sum of the squares of the predictive errors

V0 (α) =
1

m

m∑
k=1

((
Gm

[k]
α,L

)
k
− dk

)2
.
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Other Regularization Methods

Total least squares: this method attempts to account for the

error in the coe�cient matrix as well as right hand side. If

constraints are not an issue, this method is preferable to least

squares and has some good statistical properties more

favorable than ordinary least squares.

Maximum likelihood approach: introduce a stochastic

component into the model

n (t + 1) = exp (D (t))An (t)

where D (t) is a diagonal matrix with a multivariate normal

distribution of mean zero and covariance matrix Σ. Let p be

the vector of parameters to be estimated and use the observed

data to obtain maximum likelihood estimates of p and Σ.

And, of course, there are in�nitely many other statistical

methods for point estimates of individual parameters....
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Basic Ideas and TheoryInverse ProblemsConclusions

Summary

Inverse problems arising from parameter recovery in Lefkowitz

models are ill posed, but can be managed by tools of inverse

theory such as least squares, Tikhonov regularization and

constrained optimization.

There are some interesting data in the literature relating to

freshwater turtles that seem to exploit purely statistical

methods. I plan to explore Lefkovitch modeling in this context.

Regularization tools may o�er new insights, particularly in

modeling that leads to rank de�cient problems.

Speci�cally, one might try to push the envelope with a

non-stationary projection matrix. Or nonlinear one. Or tackle

unknown reproductive rates. These will likely give problems

with worse conditioned that our working example.

The role of total least squares seems to be largely unexplored

for these problems. This warrants further investigation.
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Summary

Inverse problems arising from parameter recovery in Lefkowitz

models are ill posed, but can be managed by tools of inverse

theory such as least squares, Tikhonov regularization and

constrained optimization.

There are some interesting data in the literature relating to

freshwater turtles that seem to exploit purely statistical

methods. I plan to explore Lefkovitch modeling in this context.

Regularization tools may o�er new insights, particularly in

modeling that leads to rank de�cient problems.

Speci�cally, one might try to push the envelope with a

non-stationary projection matrix. Or nonlinear one. Or tackle

unknown reproductive rates. These will likely give problems

with worse conditioned that our working example.

The role of total least squares seems to be largely unexplored

for these problems. This warrants further investigation.
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