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The suspects: Freshwater copepod, freshwater turtle, female cyst
nematode, pea aphid.
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Basic Ideas and Theory The Lefkowitz Model

Matrix Theory

States, Age and Stage

@ Assume at any one time members of a time varying population
are classified into one of s mutually exclusive states, indicated
by the index i, whence population vector is

n(t)=(m(t),...,ns(£))=[m (t),...,ns(£)]"
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@ Assume at any one time members of a time varying population
are classified into one of s mutually exclusive states, indicated
by the index i, whence population vector is

n(t)=(m(t),...,ns(£))=[m (t),...,ns(£)]"

@ All individuals experience the same environment.

Thomas Shores Department of Mathematics University of | Inverse Methods For Time Series



Basic Ideas and Theory The Lefkowitz Model

Matrix Theory

States, Age and Stage

@ Assume at any one time members of a time varying population
are classified into one of s mutually exclusive states, indicated
by the index i, whence population vector is
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written as the sum of the contributions of the individuals.

Thomas Shores Department of Mathematics University of | Inverse Methods For Time Series



Basic Ideas and Theory The Lefkowitz Model

Matrix Theory

States, Age and Stage

@ Assume at any one time members of a time varying population
are classified into one of s mutually exclusive states, indicated
by the index i, whence population vector is

n(t)=(m(t),...,ns(£))=[m (t),...,ns(£)]"

@ All individuals experience the same environment.

@ The effects of the population on the environment can be
written as the sum of the contributions of the individuals.

o Candidates: age, size, instars, genders, geographical locales
(patches) and and meaningful combination of these states.
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Basic Ideas and Theory The Lefkowitz Model

Matrix Theory

Linear Form of Classic Examples

Projection Model:
n(t+1)=An(t)

where A; = [a;j] is s X s projection matrix.
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Basic Ideas and Theory The Lefkowitz Model

Matrix Theory

Linear Form of Classic Examples

Projection Model:
n(t+1)=An(t)

where A; = [a;j] is s X s projection matrix.

@ Note: coefficients could vary with time. If not, this is a
stationary (or time-invariant) model and we simply write
At == A
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Basic Ideas and Theory The Lefkowitz Model
Matrix Theory

Linear Form of Classic Examples

Projection Model:
n(t+1)=An(t)
where A; = [a;j] is s X s projection matrix.
@ Note: coefficients could vary with time. If not, this is a
stationary (or time-invariant) model and we simply write
At == A
o Coefficients could even be non-local: e.g., birth rates could be

dependent on a carrying capacity of environment. Ditto other
forms of recruitment.
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o Here F; is the per-capita fertility of age class i/ and P; is the
survival rate of age class j. Clearly 0 < P; < 1.
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Leslie Model (71945)

Population is divided into discrete age groups, resulting in
projection matrix

[ A R - Fs1 Fs
P, 0 -- 0
A= 0 P :
0 0
- Ps_l 0 -

o Here F; is the per-capita fertility of age class i/ and P; is the
survival rate of age class j. Clearly 0 < P; < 1.
@ Linearity or stationarity not required.
0 e—bN 5e—bN
@ Example: A= .3 0 0 , where N = ny + ny.
0 05 0
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Lefkovitch Model (71962)

Population is divided into discrete stages, resulting in a very general
projection matrix A = [a; ], ..
@ Here one chooses a projection interval (t,t + 1) representing
the time states of the model.
@ Linearity or stationarity not required.

@ The entry a;; represents a rate (or probability) of passage
from stage / to stage j. (Hence a;; > 0.)



Lefkovitch Model (71962)

Population is divided into discrete stages, resulting in a very general
projection matrix A = [aj ], ..
@ Here one chooses a projection interval (t,t + 1) representing
the time states of the model.
@ Linearity or stationarity not required.
@ The entry a;; represents a rate (or probability) of passage
from stage / to stage j. (Hence a;; > 0.)
@ The matrix A is equivalent to a (directed) life cycle graph for
the population.



Basic |deas and Theory The Lefkowitz Model

Matrix Theory

Tensor Notation

Tensor (Kronecker, direct) Product:

Given m x n matrix A = [a; ] and p x g matrix B = [b; j], the
tensor product of A and B is the mp x ng block matrix

al,lB al,zB coo aL,,B

32,15 32,23 s ag’,,B
A® B = .

am7lB amQB ce am7lB
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Basic |deas and Theory The Lefkowitz Model

Matrix Theory

Tensor Notation

Tensor (Kronecker, direct) Product:

Given m x n matrix A = [a; ] and p x g matrix B = [b; j], the
tensor product of A and B is the mp x ng block matrix

al,lB al,zB coo aL,,B

32,15 32,23 s ag’,,B
A® B = .

am7lB amQB ce am7lB

@ There are lots of algebra laws, e.g.,
(A® (BB+~C) = BA® B+ yA® C and interesting
properties, e.g., eigenvalues of A ® B are just the products of
eigenvalues of A and B, etc., etc., that we won’t need.
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Basic |deas and Theory The Lefkowitz Model

Matrix Theory

Tensor Notation

Tensor (Kronecker, direct) Product:

Given m x n matrix A = [a; ] and p x g matrix B = [b; j], the
tensor product of A and B is the mp x ng block matrix

al,lB al,zB coo aL,,B

32,15 32,23 s ag’,,B
A® B = .

am7lB amQB ce am7lB

@ There are lots of algebra laws, e.g.,
(A® (BB+~C) = BA® B+ yA® C and interesting
properties, e.g., eigenvalues of A ® B are just the products of
eigenvalues of A and B, etc., etc., that we won’t need.

@ Matlab knows tensors: C = kron(A,B) does the trick.
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Tensors as Bookkeeper

Vec or Co(concatenate) Notion:

Given m x n matrix A = [a;j] = [a1,a2,...,a,)] as a row of
columns,
ai
az
vec(A) = | .
an

@ There are more algebra laws, e.g.,
vec (A + BB) = avvec (A) + Bvec(B).
o Key Bookkeeping Property:

vec (AXB) = (BT ® A) vec (X).

o Matlab knows vec. The command x = vec(X) does the trick. )
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Formulation and Examples

Inverse Problems .
Some Methodologies

Formulation

The Problems:

@ Forward (Direct) Problem: Given a question, find the answer.
E.g., given a projection matrix A and present system state
n (t), find the next state of the system n (¢ + 1). Solution:
n(t+1)=An(t).
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Formulation

The Problems:

@ Forward (Direct) Problem: Given a question, find the answer.
E.g., given a projection matrix A and present system state
n (t), find the next state of the system n (¢t + 1). Solution:
n(t+1)=An(t).

@ Inverse Problem: Given an answer, find the question. E.g.,
given a projection matrix A and present system state n (t),

find the previous state of the system n (¢t — 1). Solution:
n(t—1)= A"1n(t) (maybe!)
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Formulation and Examples

Inverse Problems .
Some Methodologies

Formulation

The Problems:

@ Forward (Direct) Problem: Given a question, find the answer.
E.g., given a projection matrix A and present system state
n (t), find the next state of the system n (¢t + 1). Solution:
n(t+1)=An(t).

@ Inverse Problem: Given an answer, find the question. E.g.,
given a projection matrix A and present system state n (t),
find the previous state of the system n (¢t — 1). Solution:
n(t—1)= A"1n(t) (maybe!)

@ Parameter Identification: a special class of inverse problems
that finds parameters of a model, e.g., given many system
states n (t;), find the projection matrix. This is tougher.
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Formulation and Examples
Some Methodologies

Inverse Problems

Nature of Inverse Problems

Given a two-way process with “answers” at both ends, what makes
one direction “direct” and the other “inverse’?
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Formulation and Examples
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Inverse Problems

Nature of Inverse Problems

Given a two-way process with “answers” at both ends, what makes
one direction “direct” and the other “inverse’?

@ Forward problems are generally well-posed, that is, have a
solution, it is unique and it varies continuously with the
parameters of the problem
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Formulation and Examples
Some Methodologies

Inverse Problems

Nature of Inverse Problems

Given a two-way process with “answers” at both ends, what makes
one direction “direct” and the other “inverse’?

@ Forward problems are generally well-posed, that is, have a
solution, it is unique and it varies continuously with the
parameters of the problem

@ Inverse problems are generally ill-posed, i.e., not well-posed,
and all three possible failings occur in the simple inverse
problem of solving Ax = b for the unknown x, given A, b.
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Postulate s x s projection matrix A for a stage structured
population, together with data (possibly replicated and averaged)
for the states n(1),n(2),...,n(s+1). We have prior knowledge
of A: all entries are nonnegative and certain entries are zero.

Frame the problem as follows:
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A Generic Example

Postulate s x s projection matrix A for a stage structured
population, together with data (possibly replicated and averaged)
for the states n(1),n(2),...,n(s+1). We have prior knowledge
of A: all entries are nonnegative and certain entries are zero.

@ An(k)=n(k+1), k=1,...,s.
Set M=[n(1),n(2),...,n(s)] and
P=[n(2),n(2),...,n(s+1)].
Recast problem as AM = P = ILAN.
Tensor bookkeeping:
vec (I,AM) = (MT ® IS) vec (A) = vec(P) =d.

Delete zero variables from vec (A) and columns of M7 ® I.

Rename resulting vectors, matrix as m,G and rhs d. System
takes form Gm =d, with G p X g, typically p > q.




A Working Example

Taken from Caswell’s text, in turn from a referenced paper that |
can’t find by Kaplan and Caswell-Chen: the sugarbeet nematode
Heterodera schachtii has five stages (eggs, juvenile J2, J3, J4 and
adult.) Following data is density of nematodes (per 60cc of soil) for
stages J2, J3+J4, adult, averaged over four replicates, measured
every two days:

| t=0]t=1[¢t=2]¢t=3]t=4]1t=5]
5.32 0.33 2.41 2.06 1.70 3.16
24.84 18.16 17.14 3.25 2.08 11.23
115.50 | 167.16 | 159.25 | 112.87 | 132.62 | 149.62

This population leads to a population projection matrix

Pr 0 F3
A= G P
Gy P3
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Least Squares (7)
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Formulation and Examples
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Some Methodologies

Of course, with much data we will almost certainly have an
inconsistent system Gm = d. The problem is therefore ill-posed.
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Formulation and Examples

Inverse Problems Some Methodologies

Of course, with much data we will almost certainly have an
inconsistent system Gm = d. The problem is therefore ill-posed.

@ Recouch the (probably) ill-posed problem Gm = d as the
optimization problem

- 2
min [Gm —d]|5.
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Formulation and Examples

Inverse Problems Some Methodologies

Of course, with much data we will almost certainly have an
inconsistent system Gm = d. The problem is therefore ill-posed.

@ Recouch the (probably) ill-posed problem Gm = d as the
optimization problem

min ||Gm —d||>.

in [|Gm — d3

o This is equivalent to solving the normal equations
G"Gm=G"d

which, ASSUMING G has full column rank, has a unique

solution m*,
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Least Squares and Working Example
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Formulation and Examples
Some Methodologies

More Least Squares:

@ Least squares has many pleasant statistical properties, e.g., if
the data errors are i.i.d. normal r.v.’s, then entries of m* are
normally distributed and E [m*] = mye, where
Gmyye = dige.

Inverse Problems
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More Least Squares:

@ Least squares has many pleasant statistical properties, e.g., if
the data errors are i.i.d. normal r.v.’s, then entries of m* are
normally distributed and E [m*] = mye, where
Gmyye = dige.

Inverse Problems

2

@ Given that the variance of data error is 0%, one can form the

chi-square statistic
2 2 2
Xobs = HGm - d||2 /U

and this turns out to be a r.v. with a x? distribution with
m — n (row number of G minus column number) degrees of
freedom.
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Formulation and Examples
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More Least Squares:

@ Least squares has many pleasant statistical properties, e.g., if
the data errors are i.i.d. normal r.v.’s, then entries of m* are
normally distributed and E [m*] = mye, where
Gmyye = dige.

Inverse Problems

2

@ Given that the variance of data error is 0%, one can form the

chi-square statistic
2 2 2
Xobs = HGm - d||2 /U

and this turns out to be a r.v. with a x? distribution with
m — n (row number of G minus column number) degrees of
freedom.

o The probability of obtaining a x? value as large or larger than
the observed number is the p-value p = [5 f,2 (x) dx which
obs

is a uniformly distributed r.v.
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Formulation and Examples

Inverse Problems Some Methodologies

Wood's Quadratic Programming Method

Why cast aspersions on least squares? Inter alia, the good features

don't apply: take a look at G. Moreover, it may result in negative
entries in the projection matrix!

Fix the Negativity:

Now let's run the script WorkingExample.m.
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Wood's Quadratic Programming Method

Why cast aspersions on least squares? Inter alia, the good features

don't apply: take a look at G. Moreover, it may result in negative
entries in the projection matrix!

Fix the Negativity:

@ Recast the problem as constrained optimization problem:

min ||Gm — d|3
m

subject to constraints Cm > b where the constaints ensure
conditions like m > 0 and P; + G; < 1.

Now let's run the script WorkingExample.m.
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Formulation and Examples

Inverse Problems Some Methodologies

Wood's Quadratic Programming Method

Why cast aspersions on least squares? Inter alia, the good features
don't apply: take a look at G. Moreover, it may result in negative
entries in the projection matrix!

Fix the Negativity:

@ Recast the problem as constrained optimization problem:

min ||Gm — d|3
m

subject to constraints Cm > b where the constaints ensure
conditions like m > 0 and P; + G; < 1.

@ Solving a least squares problem only by adding constraints is
one kind of regularization strategy. Sometimes it works well,
but there are examples where it’s awful.

Now let's run the script WorkingExample.m.
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Regularized Least Squares
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Formulation and Examples

Inverse Problems Some Methodologies

Suppose that our problem had been severely poorly conditioned or
even rank deficient.

What to do?

Now even the problem ming, ||Gm — d||3 gets us into trouble, with
or without constraints.

Thomas Shores Department of Mathematics University of | Inverse Methods For Time Series



Formulation and Examples

Inverse Problems Some Methodologies

Suppose that our problem had been severely poorly conditioned or
even rank deficient.

What to do?

Now even the problem ming, ||Gm — d||3 gets us into trouble, with
or without constraints.

@ Tikhonov regularization: add a regularizing term that makes
the problem well posed:

min [|Gm —d|3 + o? [|L (m — mo)|[3.
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Inverse Problems Some Methodologies

Suppose that our problem had been severely poorly conditioned or
even rank deficient.

What to do?

Now even the problem ming, ||Gm — d||3 gets us into trouble, with
or without constraints.

@ Tikhonov regularization: add a regularizing term that makes
the problem well posed:

min [|[Gm —d||3 +a? | L (m — mo)|3.

@ Here a has to be chosen and L is a “smoothing” matrix like
L = | (zeroth order Tikhonov regularization) or matrices which
mimic discretized first or second derivatives (higher order
regularization. There's a Bayesian flavor here, esp. if mg # 0.)
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Formulation and Examples

Inverse Problems Some Methodologies

Suppose that our problem had been severely poorly conditioned or
even rank deficient.

What to do?

Now even the problem ming, ||Gm — d||3 gets us into trouble, with
or without constraints.

@ Tikhonov regularization: add a regularizing term that makes
the problem well posed:

min [|[Gm —d||3 +a? | L (m — mo)|3.

@ Here a has to be chosen and L is a “smoothing” matrix like
L = | (zeroth order Tikhonov regularization) or matrices which
mimic discretized first or second derivatives (higher order
regularization. There's a Bayesian flavor here, esp. if mg # 0.)

@ Note: statisticians are somewhat wary of this regularization as
that it introduces bias into model estimates.
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To choose an a:

Some of the principal options:

Inverse Problems

@ The L-curve: do a loglog plot of ||[Gm, — d||g Vs HLmaHg and
look for the o that gives a “corner” value that balances these
two terms.
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@ The L-curve: do a loglog plot of ||[Gm, — d||g Vs HLmaHg and
look for the o that gives a “corner” value that balances these
two terms.

@ (Morozov's discrepancy principle) Choose a so that the misfit
||Gm, — dJ|, is the same size as the data noise ||dd||,
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Formulation and Examples
Some Methodologies

To choose an a:

Some of the principal options:

Inverse Problems

@ The L-curve: do a loglog plot of ||[Gm, — d||g Vs HLmaHg and
look for the o that gives a “corner” value that balances these
two terms.

@ (Morozov's discrepancy principle) Choose a so that the misfit
||Gm, — dJ|, is the same size as the data noise ||dd||,

@ GCV (comes from statistical “leave-one-out” cross validation):
Leave out one data point and use model to predict it. Sum
these up and choose regularization parameter a that minimizes
the sum of the squares of the predictive errors

SR (CHEEYE
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Other Regularization Methods

o Total least squares: this method attempts to account for the
error in the coefficient matrix as well as right hand side. If
constraints are not an issue, this method is preferable to least
squares and has some good statistical properties more
favorable than ordinary least squares.
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o Total least squares: this method attempts to account for the
error in the coefficient matrix as well as right hand side. If
constraints are not an issue, this method is preferable to least
squares and has some good statistical properties more
favorable than ordinary least squares.

@ Maximum likelihood approach: introduce a stochastic
component into the model

n(t+1) =exp(D(t)) An(t)

where D (t) is a diagonal matrix with a multivariate normal
distribution of mean zero and covariance matrix . Let p be
the vector of parameters to be estimated and use the observed
data to obtain maximum likelihood estimates of p and X.




Other Regularization Methods

o Total least squares: this method attempts to account for the
error in the coefficient matrix as well as right hand side. If
constraints are not an issue, this method is preferable to least
squares and has some good statistical properties more
favorable than ordinary least squares.

@ Maximum likelihood approach: introduce a stochastic
component into the model

n(t+1) =exp(D(t)) An(t)

where D (t) is a diagonal matrix with a multivariate normal
distribution of mean zero and covariance matrix . Let p be
the vector of parameters to be estimated and use the observed
data to obtain maximum likelihood estimates of p and X.

@ And, of course, there are infinitely many other statistical
methods for point estimates of individual parameters....




Conclusions

Summary

@ Inverse problems arising from parameter recovery in Lefkowitz
models are ill posed, but can be managed by tools of inverse
theory such as least squares, Tikhonov regularization and
constrained optimization.
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@ Inverse problems arising from parameter recovery in Lefkowitz
models are ill posed, but can be managed by tools of inverse
theory such as least squares, Tikhonov regularization and
constrained optimization.

@ There are some interesting data in the literature relating to
freshwater turtles that seem to exploit purely statistical
methods. | plan to explore Lefkovitch modeling in this context.
Regularization tools may offer new insights, particularly in
modeling that leads to rank deficient problems.
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theory such as least squares, Tikhonov regularization and
constrained optimization.

@ There are some interesting data in the literature relating to
freshwater turtles that seem to exploit purely statistical
methods. | plan to explore Lefkovitch modeling in this context.
Regularization tools may offer new insights, particularly in
modeling that leads to rank deficient problems.

@ Specifically, one might try to push the envelope with a
non-stationary projection matrix. Or nonlinear one. Or tackle
unknown reproductive rates. These will likely give problems
with worse conditioned that our working example.
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Conclusions

Summary

@ Inverse problems arising from parameter recovery in Lefkowitz
models are ill posed, but can be managed by tools of inverse
theory such as least squares, Tikhonov regularization and
constrained optimization.

@ There are some interesting data in the literature relating to
freshwater turtles that seem to exploit purely statistical
methods. | plan to explore Lefkovitch modeling in this context.
Regularization tools may offer new insights, particularly in
modeling that leads to rank deficient problems.

@ Specifically, one might try to push the envelope with a
non-stationary projection matrix. Or nonlinear one. Or tackle
unknown reproductive rates. These will likely give problems
with worse conditioned that our working example.

@ The role of total least squares seems to be largely unexplored
for these problems. This warrants further investigation.
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