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OUTLINE OF TWO LECTURES:

1. Basic Ideas and Theory
(a) Some Examples
(b) A General Setting
(c) The Regularization Idea

(d) *Sample Calculations

2. Applications to Biology Models
(a) A Pharamacokinetic Model
(b) An Exponential Growth Model
(c) A Size Dependent Population Model

*Using the MATLAB GUI Numderiv, as time permits.
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LECTURE 1: BASIC IDEAS AND THEORY
Some Examples
What are we talking about? A direct problem
is the sort of thing we traditionally think about
In mathematics:
Question — Answer
An inverse problem looks like this:

Question «—— Answer

Example 1. The game played on TV show
“Jeopardy’: given the answer, say the question.

Actually, this schematic doesn’'t quite capture
the real flavor of inverse problems. It should
look more like

Question «—— (Approximate) Answer
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Example 2. The game played on TV show
“Wheel of Fortune'.

Direct problem: if someone says the message,
you spell it.

Inverse problem: if someone spells the message
(approximately), you say it.

Here are some mathematical examples:
Example 3. Polynomial roots.

Direct problem: given a polynomial, find all its
roots.

Inverse problem: given a list of roots, find a
polynomial with exactly those roots.

Note. This is one of those (rare) situations in
which the inverse problem is much easier than
the direct problem!



Example 4. The m xn matrix A, n x 1 vector
x and m x 1 vector b satisfy Ax = b.

Direct problem: given A,x compute b.
Inverse problem: given A,b, compute x.
Example 5. (Differentiation)

Direct problem: given f(x) € C][0,1], find the
indefinite integral

F(a) = [ 1(y) dy.

Inverse problem: given F(0) = 0 and F(x) €
cllo, 1], find F'(x).

(Recall that CJ[0, 1] (C1[0,1]) is the set of all
continuous functions (functions with continu-
ous derivative) on the interval [0, 1].)



Example 6. (Parameter identification) Heat
flows in a steady state through an insulated
inhomogeneous rod with a known heat source
and the temperature held at zero at the end-
points. Under modest restrictions, the tem-
perature function u(xz) obeys the law

_ (k(a;)u’)’ — f(z), O<z<1

with boundary conditions «(0) = 0 = u(1),
thermal conductivity k(x), 0 <2 <1 and f(x)
determined by the heat source.

Direct Problem: given parameters k(z), f(x),
find u(z) = u(x; k).

Inverse Problem: given f(x) and measurement
of u(x), find k(x).

The mapping from parameter set (inputs) to
solutions (outputs) is not a linear function, i.e.,
u(x; k1 + ko) #= u(zx; k1) + u(z; ko), and its in-
verse may not even be defined — so k(xz) is not
necessarily identifiable from any outputs!
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A General Setting

What makes inverse problems any different from
direct problems? In some cases, there really
isn't much difference. What mathematicians
know and love is the kind of problem defined by
Hadamard around the beginning of the twen-
tieth century. A well-posed problem is char-
acterized by three properties:

1. The problem has a solution.
2. The solution is unique.

3. The solution is stable, that is, it varies
continuously with the given parameters of the
problem.

A problem that is not well-posed is called ill-
posed.

In numerical analysis we are frequently cau-
tioned to make sure that a problem is well
posed before we design solution algorithms.

6



Let's return to some of our examples. We saw
earlier that inverse problems need not be linear
processes. Nonetheless, linear problems are a
focal point of inverse theory. If linear inverse
problems present problems, we can only imag-
ine how much more difficult nonlinear problems
might be.

As a case in point, consider Example 4 (Ax =
b); multiplication by the m x n matrix A can
be thought of as a linear operator (read “linear
function”) K : R® — R™. In this language, the
direct problem is to find y = Kux, given A, x,
and the inverse problem is to find z, given K,y
and Kx = y.

Likewise, Example 5 (differentiation) is a linear
problem. There is a customary way of express-
ing this example in the language of “integral
equations.” Define k(x,y) by



_f[o, ifo<z<y<1
k®ﬂy_{1,ﬁ0§y§x§l

so that F(x) = [y f(y) dy can be expressed as

F@) = [ K@) @) dy = [ ko) f) dy

This is a Volterra integral equation of the first
kind if the last term is deleted and a Fredholm
integral equation of the first kind if the middle
term is deleted. Denote by K the operator
that maps f(z) to F(x). The punch line is the
same as in Example 4 (Ax = b), that is, solving
the linear operator equation Kf = F for F'is
the direct problem, and solving it for f is the
inverse problem.

So what's the fuss? The direct problem of
computing F from F = Kf is easy and the
solution to the inverse problem is f = K~ 1F
right?



Wrong! All of Hadamard’s well-posedness re-
quirements fall by the wayside, even for the
“simple”’ inverse problem of solving for x with
Ax = b a linear system.

1. The system

HIEEH

has no solution!

2. The system

14][2]-[3

has infinitely many solutions.
1 1

1)1 )=

has no solution for € = 0 and infinitely many
for e = 0, so solutions do not vary continuously
with the parameter e¢.

3. The system




The Regularization Idea

How can we extricate ourselves from these prob-
lems, if only for the “simple” system Ax = b~

Existence: We use an old trick: least squares,
which finds the x that minimizes the size of the
residual (squared) ||b — Ax]||?. This turns out to
be equivalent to solving the normal equations

Al Ax = A'b,

a system which is guaranteed to have a solu-
tion. Further, we can see that if Ax = b has
any solution, then every solution to the nor-
mal equations is a solution to Ax = b. This
trick extends to more abstract linear operators
K of equations Kx = y using the concept of
“adjoint” operators K* which play the part of
a transpose matrix A7
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Uniqueness: We “regularize” the problem. Rather
than give the general theory, we'll illustrate it

by one particular kind of regularization, called
Tikhonov regularization. One introduces a reg-
ularization parameter o > 0 in such a way that
small o« give us a problem that is “close” to
the original. In the case of the normal equa-
tions, one can show that minimizing the mod-
ified residual

Ib — Ax|)? + o ||x||?

leads to the linear system (ATA + aI) x = Alb,
where I is the identity matrix. One can show
the coefficient matrix AT A + o is always non-
singular. Therefore, the problem has a unique
solution. What should we do about «? This is
one of the more fundamental (and intriguing)
problems of inverse theory. Let's analyze one
of our simple systems for insight, say

Gl
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Invariably, our input data for the inverse prob-
lem, (1,1), has error in it, say we have (1 +
51,1 + 6») for data instead. Let § = 61 + do.
The regularized system becomes

2+« 2 x1 | _|24+0 | _ 1
R IEFIR ORI
which has unique solution

2] _[24a 2 177 2441
BRI e
Observe that if the input error § were 0, all we
would have to do is let « — 0 and we would get

the valid solution 4(1,1). But given that the
Input error is not zero, taking thelimitasa — O

gives us a worse approximation to a solution

than we would otherwise get by choosing a ~
20.

(2+6) [ .

There are many questions here, e.g., how do
we know in general what the best choice of
regularization parameter is, if any? This and
other issues would be the subject matter of a
course in inverse theory.
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Stability: We get this for free — for each reg-
ularized problem. We cannot hope to have
stability for the unregularized problem Kz =y,
even if K—1 is well defined (although stability
happens in some cases). However, we have
to look to infinite dimensional examples such
as our Example 5 (operator K is integration),
where it can be shown that K—1 (differentia-
tion) exists but is not continuous, even though
K is. Specifically, we have K : C[0,1] — C[0, 1]
via the rule Kf(x) = J§ f(y) dy is a one-to-one
function. Measure size by the sup norm:

[fll = sup |f(=)]
0<x<1

so that the “closeness” of f(x) and g(x) is de-
termined by the number ||f — g||. Then one can
show that the operator K is continuous in the
sense that if f(z) and g(x) are close, then so
are Kf(xz) and Kg(x).
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Let R = K(C][O0,1]), the range of K. Then
K—1:R — C[0,1] is also one-to-one. But it is
not continuous. For consider the function

ge(x) = esin (%) ,

where € > 0. We have ||ge|]| = |lge — 0]| <e. So
for small ¢, g-(x) is close to the zero function.
Yet,

1
K 1lg:(2) = ge(z) = % cos (%) = ~ cos (%)
g g g g

so that HK‘lggH = 1, so that K~ 1g. becomes
far from zero as ¢ — 0. Hence K1 is not a

continuous operator.

These calculations raise a question: How do we
“regularize” the differentiation operator? There
IS a Tikhonov regularization, but we want to
show another somewhat simpler approach, which
nicely illustrates the effects of noisy data.

Suppose we can sample F(x) at equally spaced
nodes xp = kh, k=0,1,...,n and h = 1/n.
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Of course there is noise in the data, so instead
of F, = F(xy), we get F.+6;, with each || <6,
say. We'll use centered differences to approx-
imate the derivative values F] = F'(xy), k =
1,...,n—1. We know from calculus that

P41 —Fp1 _
2h
Here “O(t)" means roughly “a quantity no big-
ger than a constant multiple of ¢ for sufficiently
small t."" What we actually calculate is

(Fr1 + 0p41) — (Fro1 + 651
2h
Fp41 — F1 n Ok+1 — Ok—1
2h 2h

= F+00?) +0()

Fi, + O(h?)

o
Fk

Think of h or n as the regularization parameter
(recall that h = 1/n). In the ideal world of
exact data and calculations, we would simply

let h — O to obtain ever better answers.
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In the imperfect real world, the calculated term
shows clearly that it is not wise to let h — O
in the situation of a nonzero sampling error 6.
Rather we should try to balance the error terms
in such a way that the theoretical error O(h?)
predominates. We might try O(h?) > O(2),
which suggests for some constant ¢, that h2 >
9 thatis, h > (c6)}/3. This is a familiar lesson
in elementary numerical analysis when one trys
to account for the impact of finite precision
calculations on numerical differentiation.

Of course, there are other approaches. One
very useful idea is to approximately interpolate
the data with some sort of smooth curve (like
a spline) and then differentiate the smooth
curve. A very charming presentation compar-
ing centered differences and natural cubic splines
was given in a recent American Math Monthly,
vol 108, year 2001. Interestingly enough, a
careful analysis gives the same sort of lower
bounds on step size h as we saw above.
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LECTURE 2: APPLICATIONS TO BIOLOGY
MODELS

A Pharmacokinetic Model

Suppose a drug is introduced into the blood
stream or a metabolite is already in the blood
stream, and is thence exchanged with an organ
within the body through bounding membranes.
We'll assume that the exchange rates between
these two locales are proportional to the source
of metabolite being transported across the mem-
branes and that the rate coefficients are non-
negative constants. Here is a schematic for
the action (¢ is time):

i) L(©)

Y I

D b 2

Blood Organ

o
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We are interested in the concentrations z;(t) of
the metabolite in each compartment 7. (Note:
volumes have been incorporated into the rate
numbers, which are concentration rates of ex-
change.) These functions are governed by a
differential equation of the form (I'm append-
ing the optional input in parentheses.)

[m(t)]’_ —(a+c) b ”x1<t>]<+[7:1<t>]>
a —b | | zo(t) i2(t)

ro(t) |
This is an example of a “‘compartment model.”
One could imagine more compartments, more
than one drug or metabolite under considera-
tion and inputs into some of the compartments
that would not be representated by rate coef-
ficients, but by input functions.
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Notations for Compartment Model: x(t)' =
Ax(t) + Bw(t)

o x(t) = (x1(t),x>(t)) is the response func-
tion.

o y(t) = [ 10 ] [ ggg ] = Cx(t) is the out-

put function.
e (' is the output sampling matrix.

e w(t) = (uq(t),uns(t)) is a set of controlled
inputs.

o u(t) = [é ?] [Z;% ] — Bw(t) is the in-

put function.

e B is the input distribution matrix.
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With all of this notation, the governing dynam-
ics of this compartment model can be given as

x'(t) = Ax(t) + Bw(t)

Direct problem: Given the model, compute
the input function u(¢) = Bw(¢) and output
function y(t) = Cx(t).

Inverse Problem: Given the inputs and out-
puts, compute the matrix A.

Note: This inverse problem is a special sort
of parameter identification problem, where the
parameters are constants. The goal is to really
identify them (at least in principle), so skip reg-
ularization parameters, nearby solutions, etc.
If knowledge of the inputs and outputs is suffi-
cient to compute the parameters explicitly (in
principle), we say the system is identifiable.
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Let’'s examine our example (without inputs) in
detail and see if we can design an experiment
that helps us identify the system. Here our
system is

x1<t>]’_[—<a+c> b ”a:l(t)].

xo(t) | a —b x5 (1)
and our output function is

y®=[1 0] i;gg]:xl(t).

We calculate the characteristic polynomial of
A as

—(a+c¢)—s b

a —b—s
= s°4+ (a+ b+ c)s+ be

which has discriminant

(a+b4+c)2 —4chb=(b—c)? + a® + 2a(b+ ¢).

This tells us that the eigenvalues of A are re-
peated if b = c and a = 0, and otherwise they
are real and distinct.

p(s) =
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Before we analyze the examples, we define a
data point to be any scalar component of the
output vector or the response vector at a par-
ticular time. We will always count the first
time of measurement as t = 0. Thus, for ex-
ample, if you have initial conditions for the re-
sponse function of our example system, then
you have already two data points. BTW, we
make no a priori assumptions about knowledge
of initial conditions for the response function
of our model. What we want to know is what
data points, if any, are sufficient to identify the
rate parameters of this problem.

Case 1: (Repeated roots) In this case we as-
sume that we know a priori that the roots are
repeated, i.e., a = 0 and b = c. In this case we
know that the only eigenvalue to the system
is given by A2 4+2cA4+¢2 =0, s0 A = —c. The
general solution to the system is

x1(t)
xo(t)

dicte™ % + doe™

—ct

die
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Our first data point occursatt = 0, say z1(0) =
a;go), SO we get dp = mgo). If we tap the out-
puts at two later times, say t1 and t»>, we get
two nonlinear equations in dy and c that can
be solved by a Newton’'s method. If one of
our data points is not an output, but an initial
condition, say z5(0) = mgo), then we immedi-
ately obtain that d; = yg and one more output
xgl) = x1(t1) will give us enough information
to solve for c. Thus we need three (at least!)

data points to identify the parameters uniquely.

N.B. Why “at least”’? The problem is a little
trickier than it appears: one can get the same
value z1(t) at two separate times, yielding the
same equations in the variable x = c¢t. A com-
mon remedy is to sample many data points,
then find values of the parameters that mini-

2
£1(ty) — xg@”

resulting from each data point (output least
squares method; add a regularization term to
get the penalized least squares method.) In
any case, this system is identifiable.

mize the sum of squares of residuals
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Case 2. (Distinct real roots) Here the general
solution is

z1(t) dypeMt + dypet?t

vo(t) = dpre’tt + dppe?t

where A1, A\> are the eigenvalues of A. We also
have that

My = be
A1+ = —(a+b+c)

so that both X\i{,A> are non-positive. Thus,
four outputs should suffice to determine d11, A 1,dq2
and X>. Thus z1(¢t) is determined in princi-

ple and all further outputs add nothing to our
knowledge but confirmation of the form of x1(¢).
This information comes close to determining
the ceofficients of A in view of the above two
equations. However, these equations are insuf-
ficient to determine all three of a,b,c. There-
fore, this system is not identifiable as it stands!
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Remedies:

(1) If initial conditions are available, use them
as the first two data points. Then sample three
more outputs. As above, we can determine

z1(t) = d11e™t + dioe2?

explicitly. Differentiate this solution for xq(t)
and evaluate at ¢t = 0 to obtain

d11A1+d12A2 = 27(0) = —(a+c)z1(0) +bz2(0)
The only time this equation would not add new
information is when both z1(0) and z»(0) are
zero or of same magnitude and opposite sign.
Neither of these conditions give physical initial
conditions. This will solve the problem and in
this context, the system is identifiable.

(2) Sample the outputs with input function
u(t) = [un(t)]. An appropriate input, e.g.,

uo(t) = O, for0<t<1
AT Y1, for 1 <t < oo

(or most inputs, really) will yield sufficient in-
formation to identify the system.
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An Exponential Growth Model

Suppose a population function u(¢) can be mod-
eled by the exponential growth law

du
— — TUu
dt

where r = r(¢) is a non-constant growth rate.

Direct problem: Given the model, i.e., growth
rate function r(t), compute the population growth
function u(t).

Inverse Problem: Given the population func-
tion w(t), compute the growth rate function

r(t).

In this case, the inverse problem seems easy:

r(t) = 9 %Inu(t).
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So all we have to do is take the natural log
of the data and differentiate that function (or
differentiate and divide by the function.)

What could be simpler, right?

Wrong! You know what the catch is from
Lecture 1: numerical differentiation of data
with errors in it is much more difficult than
it sounds, and taking the log of the data first
could make things even worse. If we have time,
we'll have some fun with this example later by
way of the MATLAB GUI Numderiv.
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A Size Dependent Population Model

The direct problem here is a model for a pop-
ulation density function v = v(x,t) where ¢t > 0
Is time and x, O < x < 1 is a scaled size class
variable. Think of £ as a kind of parameter
that quantifies some characteristic of the pop-
ulation. For example, = could be age; remem-
pber that we have scaled = so that in scaled
numbers O is the age of a new born and 1 is
the largest age achieved by any member of the
populace. Another example is that = could rep-
resent scaled size. Whatever the characteristic
of this parameter, we assume that members
of the populace progress steadily in time from
class size O to class size 1 and along the way
give birth to newborns of class size O according
to some class size birth rate function.
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The basic parameter functions for this model:

e v(x,t) is the population density of members
of the species with class size x at time ¢t.

e g(x) is a size dependent growth rate.
e u(x) is a size dependent mortality rate.
e p(x) is a size dependent birth rate.

e (x) is the initial population distribution at
time t = 0.

A balance law analysis yields model equations:
vt + (gv), = —pv,0<z<1,t>0

9(0)v(0, t) /O Fo(s)o(s, ) ds, t > 0
v(z,0) = Y(x),0<z<1
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Direct Problem: Given ¢g(z), u(x), p(x) and
W (x), compute the population density function
v(xz,t).

Inverse Problem: Given all but one of the
functions g(x), u(x), p(x) and W(x), and suit-
able data sampling of v(x,t), compute the re-
maining parameter function.

This is ongoing research jointly with Alexandar
Densiov. Here is a sampling of what we've dis-
covered so far. Regarding the direct problem:

1. Even the direct problem is nontrivial. One
has to do a little work to show it is a well-
posed problem (it is.)

2. Numerical computation of the direct prob-
lem is also nontrivial, but we have an ap-
parently decent method.
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Regarding inverse problems:

1. Suppose g(x) = g is a constant, T'= 1/g
and all parameters except p are given. Un-
der some reasonable restrictions, u(x) is
uniquely determined by the data v(1,t), 0 <
t < T and Volterra integral equation

u(l 1=
/j,u(s)ds=gln( <<1!5,(CI3§ ),nggl.

2. Suppose g(x) = g is a constant and all pa-
rameters except ¢(x) are given. In general,
g(x) cannot be uniquely determined by any
measurements of v(x,t).
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