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Linear Tomography Models
Note: Rank de�cient problems are automatically ill-posed.

Basic Idea:

A ray emanates from one known point to another along a known
path `, with a detectable property which is observable data. These
data are used to estimate a travel property of the medium. For
example, let the property be travel time, so that:

Travel time is given by t =

∫
`

dt

dx
dx =

∫
`

1

v (x)
dx

We can linearize by making paths straight lines.

Discretize by embedding the medium in a square (cube) and
subdividing it into regular subsquares (cubes) in which we
assume �slowness� (parameter of the problem) is constant.

Transmit the ray along speci�ed paths and collect temporal
data to be used in estimating �slowness�.
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Example 1.6 and 4.1

The �gure for this experiment (assume each subsquare has sides of
length 1, so the size of the large square is 3× 3):
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Example 1.6 and 4.1

Corresponding matrix of distances G (rows of G represent distances
along corresponding path, columns the ray distances across each
subblock) and resulting system:

Gm =



1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1√
2 0 0 0

√
2 0 0 0

√
2

0 0 0 0 0 0 0 0
√
2





s11
s12
s13
s21
s22
s23
s31
s32
s33


=



t1
t2
t3
t4
t5
t6
t7
t8


= d

Observe: in this Example m = 8 and n = 9, so this is rank de�cient.
Now run the example �le for this example. We need to �x the path.
Assuming we are in the directory MatlabTools, do the following:
>addpath('Examples/chap4/examp1')

>path
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What Are They?

These problems arise due to ill-conditioning of G, as opposed to a

rank de�ciency problem. Theoretically, they are not ill-posed, like
the Hilbert matrix. But practically speaking, they behave like
ill-posed problems. Authors present a hierarchy of sorts for a
problem with system Gm = d. These order expressions are valid as
j →∞.

O
(

1
jα

)
with 0 < α ≤ 1, the problem is mildly ill-posed.

O
(

1
jα

)
with α > 1, the problem is moderately ill-posed.

O
(
e−αj

)
with 0 < α, the problem is severely ill-posed.
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A Severly Ill-Posed Problem

The Shaw Problem:

An optics experiment is performed by dividing a circle using a
vertical transversal with a slit in the middle. A variable intensity
light source is placed around the left half of the circle and rays pass
through the slit, where they are measured at points on the right
half of the circle.

Measure angles counterclockwise from the x-axis, using
−π/2 ≤ θ ≤ π/2 for the source intensity m (θ), and
−π/2 ≤ s ≤ π/2 for destination intensity d (s).

The model for this problem comes from di�raction theory:
d (s) =∫ π/2

−π/2
(cos (s) + cos (θ))2

(
sin (π (sin (s) + sin (θ)))

π (sin (s) + sin (θ))

)2
m (θ) dθ.
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The Shaw Problem

s

d(s)

m( )θ
θ

ds

dθ

Two Problems:

The forward problem: given source intensity m (θ), compute
the destination intensity d (s).

The inverse problem: given destination intensity d (s),
compute the source intensity m (θ).

It can be shown that the inverse problem is severly ill-posed.
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The Shaw Problem

How To Discretize The Problem:

Discretize the parameter domain −π/2 ≤ θ ≤ π/2 and the
data domain −π/2 ≤ s ≤ π/2 into n subintervals of equal size
∆s = ∆θ = π/n.

Therefore, and let si , θi be the midpoints of the i-th
subintervals:

si = θi = −π

2
+

(i − 0.5) π

n
, i = 1, 2, . . . , n.

De�ne

Gi ,j = (cos (si ) + cos (θj))
2
(
sin (π (sin (si ) + sin (θj)))

π (sin (si ) + sin (θj))

)2
∆θ

Thus if mj ≈ m (θj), di ≈ d (si ), m = (m1,m2, . . . ,mn) and
d = (d1, d2, . . . , dn), then discretization and the midpoint rule
give Gm = d, as in Chapter 3.
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The Shaw Problem
Now we can examine the example �les on the text CD for this
problem. This �le lives in 'MatlabTools/Examples/chap4/examp1'.
First add the correctd path, then open the example �le examp.m for
editing. However, here's an easy way to build the matrix G without
loops. Basically, these tools were designed to help with 3-D
plotting.

> n = 20

> ds = pi/n

> s = linspace(ds/2, pi - ds/2,n)

> theta = s;

> [S, Theta] = meshgrid(s,theta);

>G = (cos(S) + cos(Theta)).^2 .* (sin(pi*(sin(S) + ...

sin(Theta)))./(pi*(sin(S) + sin(Theta))).^2*ds;

> % want to see G (s, θ)?
> mesh(S,Theta,G)

> cond(G)

> svd(G)

> rank(G)
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Basics

Regularization:

This means �turn an ill-posed problem into a well-posed 'near by'
problem�. Most common method is Tikhonov regularization, which
is motivated in context of our possibly ill-posed Gm = d, i.e.,
minimize ‖Gm− d‖2, problem by:

Problem: minimize ‖m‖2 subject to ‖Gm− d‖2 ≤ δ

Problem: minimize ‖Gm− d‖2 subject to ‖m‖2≤ ε

Problem: (damped least squares) minimize
‖Gm− d‖22 + α2 ‖m‖22. This is the Tikhonov regularization

of the original problem.

Problem: �nd minima of f (x) subject to constraint
g (x) ≤ c .e function L = f (x) + λg (x), for some λ ≥ 0.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Basics

Regularization:

All of the above problems are equivalent under mild restrictions
thanks to the principle of Lagrange multipliers:

The minima of f (x) subject to constraint g (x) ≤ c must
occur at the stationary points of function L = f (x) + λg (x),
for some λ ≥ 0 (so we could write λ = α2 to emphasize
non-negativity.)

We can see why this is true in the case of a two dimensional x
by examining contour curves.

Square the terms in the �rst two problems and we see that the
associated Lagrangians are related if we take reciprocals of α.

Various values of α give a trade-o� between the instability of
the unmodi�ed least squares problem and loss of accuracy of
the smoothed problem. This can be understood by tracking
the value of the minimized function in the form of a path
depending on δ, ε or α.
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SVD Implementation

To solve the Tikhonov regularized problem, �rst recall:

∇
(
‖Gm− d‖22 + α2 ‖m‖22

)
=

(
GTGm− GTd

)
+ α2m

Equate to zero and these are the normal equations for the

system

[
G

αI

]
m =

[
d

0

]
, or

(
GTG + α2I

)
m = GTd

To solve, calculate
(
GTG + α2I

)−1
GT =

V



σ1
σ21+α2

. . .
σp

σ2p+α2
0

. . .


UT

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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SVD Implementation

From the previous equation we obtain that the Moore-Penrose
inverse and solution to the regularized problem are given by

G †
α =

p∑
j=1

σj

σ2
j + α2VjU

T
j

mα = G †d =

p∑
j=1

σj

(
UT

j d
)

σ2
j + α2 Vj

which specializes to the generalized inverse solution we have seen in
the case that G is full column rank and α = 0. (Remember d = Uh

so that h = UTd.)
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The Filter Idea

About Filtering:

The idea is simply to ��lter� the singular values of our problem so
that (hopefully) only �good� ones are used.

We replace the σi by f (σi ). The function f is called a �lter.

f (σ) = σ simply uses the original singular values.

f (σ) =
σ

σ2 + α2 is the Tikhonov �lter we have just developed.

f (σ) = max {sgn (σ − ε) σ, 0} is the TSVD �lter with singular
values smaller than ε truncated to zero.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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The L-curve

L-curves are one tool for choosing the regularization paramter α:

Make a plot of the curve (‖mα‖2 , ‖Gmα − d‖2)
Typically, this curve looks to be asymptotic to the axes.

Choose the value of α closest to the corner.

Caution: L-curves are NOT guaranteed to work as a
regularization strategy.

An alternative: (Morozov's discrepancy principle) Choose α so
that the mis�t ‖Gmα − d‖2 is the same size as the data noise
‖δd‖2.

Explore the Example 5.1 �le, which constructs the L-curve of the
Shaw problem using tools from the Regularization Toolbox.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Historical Notes

Tikhonov's original interest was in operator equations

d (s) =

∫ b

a
k (s, t)m (t) dt

or d = Km where K is a compact (bounded = continuous) linear
operator from one Hilbert space H1 into another H2. In this
situation:

Such an operator K : H1 → H2 has an adjoint operator

K ∗ : H2 → H1 (analogous to transpose of matrix operator.)

Least squares solutions to min ‖Km − d‖ are just solutions to
the normal equation K ∗Km = K ∗d (and exist.)

There is a Moore-Penrose inverse operator K † such that
m = K †d is the least squares solution of least 2-norm. But
this operator is generally unbounded (not continuous.)

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Historical Notes

More on Tikhonov's operator equation:

The operator (K ∗K + αI ) is bounded with bounded inverse
and the regularized problem (K ∗K + αI )m = K ∗d has a
unique solution mα.

Given that δ = ‖δd‖ is the noise level, Tikhonov de�nes a
regular algorithm to be a choice α = α (δ) such that

α (δ) → 0 and mα(δ) → 0 as δ → 0.

Morozov's discrepancy principle is a regular algorithm.
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