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Covariance and Resolution

De�nition

The model resolution matrix for the problem Gm = d is

Rm = G †G .

Consequences:

Rm = VpV
T
p , which is just In if G has full column rank.

If Gmtrue = d, then E [m†] = Rmmtrue

Thus, the bias in the gereralized inverse solution is

E [m†]−mtrue = (Rm − I )mtrue = −V0V
T
0
mtrue with

V = [VpV0].

Similarly, in the case of identically distributed data with

variance σ2, the covariance matrix is

Cov (m†) = σ2G † (
G †)T = σ2

∑p
i=1

ViV
T

i

σ2
i

.

From expected values we obtain a resolution test: if a

diagonal entry are close to 1, we claim good resolution of that

coordinate, otherwise not.
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Instability of Generalized Inverse Solution

The key results:

For n × n square matrix G

cond2 (G ) = ‖G‖
2

∥∥G−1
∥∥
2

= σ1/σn.

This inspires the de�nition: the condition number of an m × n

matrix G is σ1/σq where q = min {m, n}.
Note: if σq = 0, the condition number is in�nity. Is this notion

useful?

If data d vector is perturbed to d′, resulting in a perturbation

of the generalized inverse solution m† to m′
†, then

‖m′
†−m†‖

2

‖m†‖2
≤ cond (G )

‖d′−d‖2
‖d‖2

.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Stability Issues

How these facts a�ect stability:

If cond (G ) is not too large, then the solution is stable to

perturbations in data.

If σ1 � σp, there is a potential for instability. It is diminished

if the data itself has small components in the direction of

singular vectors corresponding to small singular values.

If σ1 � σp, and there is a clear delineation between �small�

singular values and the rest, we simple discard the small

singular values and treat the problem as one of smaller rank

with �good� singular values.

If σ1 � σp, and there is no clear delineation between �small�

singular values and the rest, we have to discard some of them,

but which ones? This leads to regularization issues. In any

case, any method that discards small singular values produces

a truncated SVD (TSVD) solution.



Stability Issues

How these facts a�ect stability:

If cond (G ) is not too large, then the solution is stable to

perturbations in data.

If σ1 � σp, there is a potential for instability. It is diminished

if the data itself has small components in the direction of

singular vectors corresponding to small singular values.

If σ1 � σp, and there is a clear delineation between �small�

singular values and the rest, we simple discard the small

singular values and treat the problem as one of smaller rank

with �good� singular values.

If σ1 � σp, and there is no clear delineation between �small�

singular values and the rest, we have to discard some of them,

but which ones? This leads to regularization issues. In any

case, any method that discards small singular values produces

a truncated SVD (TSVD) solution.



Stability Issues

How these facts a�ect stability:

If cond (G ) is not too large, then the solution is stable to

perturbations in data.

If σ1 � σp, there is a potential for instability. It is diminished

if the data itself has small components in the direction of

singular vectors corresponding to small singular values.

If σ1 � σp, and there is a clear delineation between �small�

singular values and the rest, we simple discard the small

singular values and treat the problem as one of smaller rank

with �good� singular values.

If σ1 � σp, and there is no clear delineation between �small�

singular values and the rest, we have to discard some of them,

but which ones? This leads to regularization issues. In any

case, any method that discards small singular values produces

a truncated SVD (TSVD) solution.



Stability Issues

How these facts a�ect stability:

If cond (G ) is not too large, then the solution is stable to

perturbations in data.

If σ1 � σp, there is a potential for instability. It is diminished

if the data itself has small components in the direction of

singular vectors corresponding to small singular values.

If σ1 � σp, and there is a clear delineation between �small�

singular values and the rest, we simple discard the small

singular values and treat the problem as one of smaller rank

with �good� singular values.

If σ1 � σp, and there is no clear delineation between �small�

singular values and the rest, we have to discard some of them,

but which ones? This leads to regularization issues. In any

case, any method that discards small singular values produces

a truncated SVD (TSVD) solution.



Stability Issues

How these facts a�ect stability:

If cond (G ) is not too large, then the solution is stable to

perturbations in data.

If σ1 � σp, there is a potential for instability. It is diminished

if the data itself has small components in the direction of

singular vectors corresponding to small singular values.

If σ1 � σp, and there is a clear delineation between �small�

singular values and the rest, we simple discard the small

singular values and treat the problem as one of smaller rank

with �good� singular values.

If σ1 � σp, and there is no clear delineation between �small�

singular values and the rest, we have to discard some of them,

but which ones? This leads to regularization issues. In any

case, any method that discards small singular values produces

a truncated SVD (TSVD) solution.



Chapter 4: Rank De�ciency and Ill-Conditioning

Covariance and Resolution of the Generalized Inverse Solution
Instability of Generalized Inverse Solutions
An Example of a Rank-De�cient Problem
Discrete Ill-Posed Problems

Outline

1 Chapter 4: Rank De�ciency and Ill-Conditioning

Covariance and Resolution of the Generalized Inverse Solution

Instability of Generalized Inverse Solutions

An Example of a Rank-De�cient Problem

Discrete Ill-Posed Problems

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



Chapter 4: Rank De�ciency and Ill-Conditioning

Covariance and Resolution of the Generalized Inverse Solution
Instability of Generalized Inverse Solutions
An Example of a Rank-De�cient Problem
Discrete Ill-Posed Problems

Linear Tomography Models
Note: Rank de�cient problems are automatically ill-posed.

Basic Idea:

A ray emanates from one known point to another along a known

path `, with a detectable property which is observable data. These

data are used to estimate a travel property of the medium. For

example, let the property be travel time, so that:

Travel time is given by t =

∫
`

dt

dx
dx =

∫
`

1

v (x)
dx

We can linearize by making paths straight lines.

Discretize by embedding the medium in a square (cube) and

subdividing it into regular subsquares (cubes) in which we

assume �slowness� (parameter of the problem) is constant.

Transmit the ray along speci�ed paths and collect temporal

data to be used in estimating �slowness�.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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Example 1.6 and 4.1

The �gure for this experiment (assume each subsquare has sides of

length 1, so the size of the large square is 3× 3):

1211 13

21 22 23

31 32 33

t1 t2 t3

t4

t

t5

6

t8

t7

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory



Example 1.6 and 4.1

Corresponding matrix of distances G (rows of G represent distances

along corresponding path, columns the ray distances across each

subblock) and resulting system:

Gm =



1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1√
2 0 0 0

√
2 0 0 0

√
2

0 0 0 0 0 0 0 0
√
2





s11
s12
s13
s21
s22
s23
s31
s32
s33


=



t1
t2
t3
t4
t5
t6
t7
t8


= d

Observe: in this Example m = 8 and n = 9. So it is clearly rank

de�cient. Now let's run the example �le for this example. View and

discuss the source.
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What Are They?

These problems arise due to ill-conditioning of G, as opposed to a

rank de�ciency problem. Theoretically, they are not ill-posed, like

the Hilbert matrix. But practically speaking, they behave like

ill-posed problems. Authors present a hierarchy of sorts for a

problem with system Gm = d. These order expressions are valid as

j →∞.

O
(

1

jα

)
with 0 < α ≤ 1, the problem is mildly ill-posed.

O
(

1

jα

)
with α > 1, the problem is moderately ill-posed.

O
(
e−αj

)
with 0 < α, the problem is severely ill-posed.

Instructor: Thomas Shores Department of Mathematics Math 4/896: Seminar in Mathematics Topic: Inverse Theory
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A Severly Ill-Posed Problem

The Shaw Problem:

An optics experiment is performed by dividing a circle using a

vertical transversal with a slit in the middle. A variable intensity

light source is placed around the left half of the circle and rays pass

through the slit, where they are measured at points on the right

half of the circle.

Measure angles counterclockwise from the x-axis, using

−π/2 ≤ θ ≤ π/2 for the source intensity m (θ), and
−π/2 ≤ s ≤ π/2 for destination intensity d (s).

The model for this problem comes from di�raction theory:

d (s) =∫ π/2

−π/2
(cos (s) + cos (θ))2

(
sin (π (sin (s) + sin (θ)))

π (sin (s) + sin (θ))

)2

m (θ) dθ.
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The Shaw Problem

s

d(s)

m( )θ
θ

ds

dθ

s 1

θ1

Two Problems:

The forward problem: given source intensity m (θ), compute

the destination intensity d (s).

The inverse problem: given destination intensity d (s),
compute the source intensity m (θ).

It can be shown that the inverse problem is severly ill-posed.
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The Shaw Problem

How To Discretize The Problem:

Discretize the parameter domain −π/2 ≤ θ ≤ π/2 and the

data domain −π/2 ≤ s ≤ π/2 into n subintervals of equal size

∆s = ∆θ = π/n.

Therefore, and let si , θi be the midpoints of the i-th

subintervals:

si = θi = −π

2
+

(i − 0.5) π

2
, i = 1, 2, . . . , n.

De�ne

Gi ,j = (cos (si ) + cos (θi ))
2

(
sin (π (sin (si ) + sin (θi )))

π (sin (si ) + sin (θi ))

)2

∆θ

Thus if mi ≈ m (θi ), di ≈ d (si ), m = (m1,m2, . . . ,mn) and

d = (d1, d2, . . . , dn), then discretization and the midpoint rule

give Gm = d, as in Chapter 3.
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The Shaw Problem

Now we can examine the example �les on the text CD for this

problem. However, here's an easy way to build the matrix G

without loops. Basically, these tools were designed to help with 3-D

plotting.

> n = 20

> ds = pi/n

> s = linspace(ds, pi - ds,n)

> theta = s;

> [S, Theta] = meshgrid(s,theta);

>G = (cos(S) + cos(Theta)).^2 .* (sin(pi*(sin(S) + ...

sin(Theta)))./(pi*(sin(S) + sin(Theta)))).^2*ds;

> % want to see G (s, θ)?
> mesh(S,Theta,G)

> cond(G)

> svd(G)

> rank(G)
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