Math 4/896: Seminar in Mathematics Topic: Inverse Theory

Instructor: Thomas Shores
Department of Mathematics

AvH 10

Outline

- Chapter 4: Rank Deficiency and Ill-Conditioning
 - Properties of the SVD

Basic Theory of SVD

Theorem

(Singular Value Decomposition) Let G be an $m \times n$ real matrix. Then there exist $m \times m$ orthogonal matrix U, $n \times n$ orthogonal matrix V and $m \times n$ diagonal matrix S with diagonal entries $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_q$, with $q = \min\{m, n\}$, such that $U^T GV = S$. Moreover, numbers $\sigma_1, \sigma_2, \ldots, \sigma_q$ are uniquely determined by G.

Definition

With notation as in the SVD Theorem, and U_p , V_p the matrices consisting of the first p columns of U, V, respectively, and S_p the first p rows and columns of S, where σ_p is the last nonzero singular value, then the **Moore-Penrose pseudoinverse** of G is

$$G^{\dagger} = V_{\rho} S_{\rho}^{-1} U_{\rho}^{T} \equiv \sum_{j=1}^{\rho} \frac{1}{\sigma_{j}} \mathbf{V}_{j} \mathbf{U}_{j}^{T}.$$

4 D > 4 B > 4 E > 4 E > 9 0 0

Matlab Knows It

```
Carry out these calculations in Matlab:
> n = 6
> G = hilb(n);
> svd(G)
> [U,S,V] = svd(G);
>U'*G*V - S
> [U,S,V] = svd(G,'econ');
> % try again with n=16 and then G=G(1:8)
> % what are the nonzero singular values of G?
```

Applications of the SVD

Use notation above and recall that the null space and column space (range) of matrix G are $N(G) = \{x \in \mathbb{R}^n \mid Gx = 0\}$ and

$$R(G) = \{ \mathbf{y} \in \mathbb{R}^m \,|\, \mathbf{y} = G\mathbf{x}, \, \mathbf{x} \in \mathbb{R}^n \} = \operatorname{span} \{ \mathbf{G}_1, \mathbf{G}_2, \dots, \mathbf{G}_n \}$$

Theorem

(1) rank (G) =
$$p$$
 and $G = \sum_{j=1}^{p} \sigma_j \mathbf{U}_j \mathbf{V}_j^T$

$$(2)N(G) = \operatorname{span} \{ \mathbf{V}_{p+1}, \mathbf{V}_{p+2}, \dots, \mathbf{V}_n \}, R(G^T) =$$

span
$$\{\mathbf{V}_1, \mathbf{V}_2, \dots, \mathbf{V}_p\}$$

$$(3)N\left(G^{T}\right) = \operatorname{span}\left\{\mathbf{U}_{p+1}, \mathbf{U}_{p+2}, \dots, \mathbf{U}_{m}\right\}, R\left(G\right) =$$

span
$$\{\dot{\mathbf{U}}_1,\dot{\mathbf{U}}_2,\ldots,\mathbf{U}_p\}$$

(4) $\mathbf{m}_{\dagger} = G^{\dagger}\mathbf{d}$ is the least squares solution to $G\mathbf{m} = \mathbf{d}$ of minimum 2-norm.

Use the previous notation, so that G is $m \times n$ with rank p and SVD, etc as above. By **data space** we mean the vector space \mathbb{R}^m and by **model space** we mean \mathbb{R}^n .

No Rank Deficiency:

- This means that null space of both G and G^T are trivial (both $\{0\}$).
- Then there is a perfect correspondence between vectors in data space and model space:

$$Gm = d, m = G^{-1}d = G^{\dagger}d.$$

- This is the ideal. But are we out of the woods?
- No, we still have to deal with data error and ill-conditioning of the coefficient matrix (remember Hilbert?).

Use the previous notation, so that G is $m \times n$ with rank p and SVD, etc as above. By **data space** we mean the vector space \mathbb{R}^m and by **model space** we mean \mathbb{R}^n .

No Rank Deficiency:

- This means that null space of both G and G^T are trivial (both $\{0\}$).
- Then there is a perfect correspondence between vectors in data space and model space:

$$Gm = d, m = G^{-1}d = G^{\dagger}d.$$

- This is the ideal. But are we out of the woods?
- No, we still have to deal with data error and ill-conditioning of the coefficient matrix (remember Hilbert?).

Use the previous notation, so that G is $m \times n$ with rank p and SVD, etc as above. By **data space** we mean the vector space \mathbb{R}^m and by **model space** we mean \mathbb{R}^n .

No Rank Deficiency:

- This means that null space of both G and G^T are trivial (both $\{0\}$).
- Then there is a perfect correspondence between vectors in data space and model space:

$$G\mathbf{m} = \mathbf{d}, \ \mathbf{m} = G^{-1}\mathbf{d} = G^{\dagger}\mathbf{d}.$$

- This is the ideal. But are we out of the woods?
- No, we still have to deal with data error and ill-conditioning of the coefficient matrix (remember Hilbert?).

Use the previous notation, so that G is $m \times n$ with rank p and SVD, etc as above. By **data space** we mean the vector space \mathbb{R}^m and by **model space** we mean \mathbb{R}^n .

No Rank Deficiency:

- This means that null space of both G and G^T are trivial (both $\{0\}$).
- Then there is a perfect correspondence between vectors in data space and model space:

$$G\mathbf{m} = \mathbf{d}, \ \mathbf{m} = G^{-1}\mathbf{d} = G^{\dagger}\mathbf{d}.$$

- This is the ideal. But are we out of the woods?
- No, we still have to deal with data error and ill-conditioning of the coefficient matrix (remember Hilbert?).

Use the previous notation, so that G is $m \times n$ with rank p and SVD, etc as above. By **data space** we mean the vector space \mathbb{R}^m and by **model space** we mean \mathbb{R}^n .

No Rank Deficiency:

- This means that null space of both G and G^T are trivial (both $\{0\}$).
- Then there is a perfect correspondence between vectors in data space and model space:

$$G\mathbf{m} = \mathbf{d}, \ \mathbf{m} = G^{-1}\mathbf{d} = G^{\dagger}\mathbf{d}.$$

- This is the ideal. But are we out of the woods?
- No, we still have to deal with data error and ill-conditioning of the coefficient matrix (remember Hilbert?).

Use the notation $\mathbf{m}_\dagger = \mathcal{G}^\dagger \mathbf{d}$.

Row Rank Deficiency:

- This means that null space of G is trivial, but that of G^T is not.
- Here m_{\dagger} is the unique least squares solution.
- And m_{\dagger} is the actual solution to $G\mathbf{m} = \mathbf{d}$ if and only if \mathbf{d} is in the range of G.
- But any least squares solution **m** is insensitive to any translation $\mathbf{d} + \mathbf{d}_0$ with $\mathbf{d}_0 \in N\left(G^T\right)$

Use the notation $\mathbf{m}_{\dagger} = G^{\dagger} \mathbf{d}$.

Row Rank Deficiency:

- This means that null space of G is trivial, but that of G^T is not.
- Here m_{\dagger} is the unique least squares solution.
- And m_{\dagger} is the actual solution to $G\mathbf{m} = \mathbf{d}$ if and only if \mathbf{d} is in the range of G.
- But any least squares solution **m** is insensitive to any translation $\mathbf{d} + \mathbf{d}_0$ with $\mathbf{d}_0 \in N\left(G^T\right)$

Use the notation $\mathbf{m}_\dagger = \mathcal{G}^\dagger \mathbf{d}$.

Row Rank Deficiency:

- ullet This means that null space of G is trivial, but that of G^T is not.
- Here \mathbf{m}_{\dagger} is the unique least squares solution.
- And m_{\dagger} is the actual solution to $G\mathbf{m} = \mathbf{d}$ if and only if \mathbf{d} is in the range of G.
- But any least squares solution **m** is insensitive to any translation $\mathbf{d} + \mathbf{d}_0$ with $\mathbf{d}_0 \in N\left(G^T\right)$

Use the notation $\mathbf{m}_\dagger = \mathcal{G}^\dagger \mathbf{d}$.

Row Rank Deficiency:

- ullet This means that null space of G is trivial, but that of G^T is not.
- ullet Here m_{\dagger} is the unique least squares solution.
- And m_{\dagger} is the actual solution to Gm = d if and only if d is in the range of G.
- But any least squares solution \mathbf{m} is insensitive to any translation $\mathbf{d} + \mathbf{d}_0$ with $\mathbf{d}_0 \in N\left(G^T\right)$

Use the notation $\mathbf{m}_\dagger = \mathcal{G}^\dagger \mathbf{d}$.

Row Rank Deficiency:

- This means that null space of G is trivial, but that of G^T is not.
- Here \mathbf{m}_{\dagger} is the unique least squares solution.
- And m_{\dagger} is the actual solution to Gm = d if and only if d is in the range of G.
- But any least squares solution \mathbf{m} is insensitive to any translation $\mathbf{d} + \mathbf{d}_0$ with $\mathbf{d}_0 \in N\left(G^T\right)$

Column Rank Deficiency:

- This means that null space of G^T is trivial, but that of G is not.
- Here m_t is the solution of minimum 2-norm.
- And $m_{\uparrow} + m_0$ is also an actual solution to Gm = d for any $m_0 \in \mathcal{N}(G)$.
- But d is insensitive to any translation $m_{\uparrow} + m_0$ with $m_0 \in N(G)$.

Column Rank Deficiency:

- This means that null space of G^T is trivial, but that of G is not.
- Here m_{\dagger} is the solution of minimum 2-norm.
- And $m_{\uparrow} + m_0$ is also an actual solution to Gm = d for any $m_0 \in N(G)$.
- But d is insensitive to any translation $m_{\uparrow} + m_0$ with $m_0 \in \mathcal{N}(G)$.

Column Rank Deficiency:

- This means that null space of G^T is trivial, but that of G is not.
- Here m_{\dagger} is the solution of minimum 2-norm.
- And $m_{\dagger} + m_0$ is also an actual solution to Gm = d for any $m_0 \in N(G)$.
- But d is insensitive to any translation $m_{\uparrow} + m_0$ with $m_0 \in \mathcal{N}(G)$.

Column Rank Deficiency:

- This means that null space of G^T is trivial, but that of G is not.
- Here m_{\dagger} is the solution of minimum 2-norm.
- And $\mathbf{m}_{\dagger} + \mathbf{m}_{0}$ is also an actual solution to $G\mathbf{m} = \mathbf{d}$ for any $\mathbf{m}_{0} \in \mathcal{N}(G)$.
- But d is insensitive to any translation $m_{\uparrow} + m_0$ with $m_0 \in \mathcal{N}(G)$.

Column Rank Deficiency:

- This means that null space of G^T is trivial, but that of G is not.
- Here \mathbf{m}_{\dagger} is the solution of minimum 2-norm.
- And $\mathbf{m}_{\dagger} + \mathbf{m}_{0}$ is also an actual solution to $G\mathbf{m} = \mathbf{d}$ for any $\mathbf{m}_{0} \in \mathcal{N}(G)$.
- But **d** is insensitive to any translation $\mathbf{m}_{\dagger} + \mathbf{m}_{0}$ with $\mathbf{m}_{0} \in \mathcal{N}(G)$.

Row and Column Rank Deficiency:

- ullet This means that null space of both G and G^T are nontrivial.
- Here \mathbf{m}_{\dagger} is the least squares solution of minimum length.
- We have trouble in both directions.

Row and Column Rank Deficiency:

- ullet This means that null space of both G and G^T are nontrivial.
- Here m_{\dagger} is the least squares solution of minimum length.
- We have trouble in both directions.

Row and Column Rank Deficiency:

- This means that null space of both G and G^T are nontrivial.
- ullet Here m_{\dagger} is the least squares solution of minimum length.
- We have trouble in both directions.

Row and Column Rank Deficiency:

- This means that null space of both G and G^T are nontrivial.
- \bullet Here \mathbf{m}_{\dagger} is the least squares solution of minimum length.
- We have trouble in both directions.