Math 4/896: Seminar in Mathematics Topic: Inverse Theory

Instructor: Thomas Shores Department of Mathematics

Lecture 22, April 4, 2006 AvH 10

Total Variation

Key Property:

 TV doesn't smooth discontinuities as much as Tikhonov regularization.

Change startupfile path to Examples/chap7/examp3 execute it and examp.

Total Variation

Key Property:

 TV doesn't smooth discontinuities as much as Tikhonov regularization.

Change startupfile path to Examples/chap7/examp3 execute it and examp.

Outline

Problem is $G(\mathbf{m}) = \mathbf{d}$ with least squares solution \mathbf{m}^* :

Now what? What statistics can we bring to bear on the problem?

- We minimize $\|\mathbf{F}(\mathbf{m})\|^2 = \sum_{i=1}^{n} \frac{(G(\mathbf{m}) d_i)^2}{\sigma^2}$
- Treat the linear model as locally accurate, so misfit is $\nabla \mathsf{F} = \mathsf{F} \left(\mathsf{m} + \Delta \mathsf{m} \right) - \mathsf{F} \left(\mathsf{m}^* \right) pprox \nabla \mathsf{F} \left(\mathsf{m}^* \right) \nabla \mathsf{m}$
- If σ is unknown but constant across measurements, take

$$s^{2} = \frac{1}{m-n} \sum_{i=1}^{m} (G(\mathbf{m}) - d_{i})^{2}$$

• Do confidence intervals, χ^2 statistic and p-value as in Chapter

Problem is $G(\mathbf{m}) = \mathbf{d}$ with least squares solution \mathbf{m}^* :

Now what? What statistics can we bring to bear on the problem?

- We minimize $\|\mathbf{F}(\mathbf{m})\|^2 = \sum_{i=1}^n \frac{(G(\mathbf{m}) d_i)^2}{\sigma_i^2}$
- Treat the linear model as locally accurate, so misfit is $\nabla \mathbf{F} = \mathbf{F}(\mathbf{m} + \Delta \mathbf{m}) \mathbf{F}(\mathbf{m}^*) \approx \nabla \mathbf{F}(\mathbf{m}^*) \nabla \mathbf{m}$
- Obtain covariance matrix $Cov(\mathbf{m}^*) = \left(\nabla \mathbf{F}(\mathbf{m}^*)^T \nabla \mathbf{F}(\mathbf{m}^*)\right)^{-1}$
- If σ is unknown but constant across measurements, take $\sigma_i = 1$ above and use for σ in $\frac{1}{\sigma^2} \left(\nabla \mathbf{F} \left(\mathbf{m}^* \right)^T \nabla \mathbf{F} \left(\mathbf{m}^* \right) \right)^{-1}$ the estimate

$$s^{2} = \frac{1}{m-n} \sum_{i=1}^{m} (G(\mathbf{m}) - d_{i})^{2}$$

ullet Do confidence intervals, χ^2 statistic and p-value as in Chapter

Problem is $G(\mathbf{m}) = \mathbf{d}$ with least squares solution \mathbf{m}^* :

Now what? What statistics can we bring to bear on the problem?

- We minimize $\|\mathbf{F}(\mathbf{m})\|^2 = \sum_{i=1}^{n} \frac{(G(\mathbf{m}) d_i)^2}{\sigma^2}$
- Treat the linear model as locally accurate, so misfit is $\nabla F = F(m + \Delta m) - F(m^*) \approx \nabla F(m^*) \nabla m$
- If σ is unknown but constant across measurements, take

$$s^2 = \frac{1}{m-n} \sum_{i=1}^{m} (G(\mathbf{m}) - d_i)^2$$
.

• Do confidence intervals, χ^2 statistic and p-value as in Chapter

Problem is $G(\mathbf{m}) = \mathbf{d}$ with least squares solution \mathbf{m}^* :

Now what? What statistics can we bring to bear on the problem?

- We minimize $\|\mathbf{F}(\mathbf{m})\|^2 = \sum_{i=1}^{n} \frac{(G(\mathbf{m}) d_i)^2}{\sigma^2}$
- Treat the linear model as locally accurate, so misfit is $\nabla F = F(m + \Delta m) - F(m^*) \approx \nabla F(m^*) \nabla m$
- Obtain covariance matrix $\mathsf{Cov}\left(\mathsf{m}^*\right) = \left(
 abla \mathsf{F}\left(\mathsf{m}^*\right)^T
 abla \mathsf{F}\left(\mathsf{m}^*\right)\right)^{-1}$
- ullet If σ is unknown but constant across measurements, take

$$s^2 = \frac{1}{m-n} \sum_{i=1}^{m} (G(\mathbf{m}) - d_i)^2.$$

• Do confidence intervals, χ^2 statistic and p-value as in Chapter

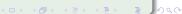
Problem is $G(\mathbf{m}) = \mathbf{d}$ with least squares solution \mathbf{m}^* :

Now what? What statistics can we bring to bear on the problem?

- We minimize $\|\mathbf{F}(\mathbf{m})\|^2 = \sum_{i=1}^n \frac{(G(\mathbf{m}) d_i)^2}{\sigma_i^2}$
- Treat the linear model as locally accurate, so misfit is $\nabla \mathbf{F} = \mathbf{F}(\mathbf{m} + \Delta \mathbf{m}) \mathbf{F}(\mathbf{m}^*) \approx \nabla \mathbf{F}(\mathbf{m}^*) \nabla \mathbf{m}$
- Obtain covariance matrix $\mathsf{Cov}\left(\mathbf{m}^*\right) = \left(\nabla \mathbf{F}\left(\mathbf{m}^*\right)^T \nabla \mathbf{F}\left(\mathbf{m}^*\right)\right)^{-1}$
- If σ is unknown but constant across measurements, take $\sigma_i=1$ above and use for σ in $\frac{1}{\sigma^2}\left(\nabla\mathbf{F}\left(\mathbf{m}^*\right)^T\nabla\mathbf{F}\left(\mathbf{m}^*\right)\right)^{-1}$ the estimate

$$s^{2} = \frac{1}{m-n} \sum_{i=1}^{m} (G(\mathbf{m}) - d_{i})^{2}.$$

ullet Do confidence intervals, χ^2 statistic and p-value as in Chapter



Problem is $G(\mathbf{m}) = \mathbf{d}$ with least squares solution \mathbf{m}^* :

Now what? What statistics can we bring to bear on the problem?

- We minimize $\|\mathbf{F}(\mathbf{m})\|^2 = \sum_{i=1}^n \frac{(G(\mathbf{m}) d_i)^2}{\sigma_i^2}$
- Treat the linear model as locally accurate, so misfit is $\nabla \mathbf{F} = \mathbf{F}(\mathbf{m} + \Delta \mathbf{m}) \mathbf{F}(\mathbf{m}^*) \approx \nabla \mathbf{F}(\mathbf{m}^*) \nabla \mathbf{m}$
- Obtain covariance matrix $Cov(\mathbf{m}^*) = \left(\nabla \mathbf{F}(\mathbf{m}^*)^T \nabla \mathbf{F}(\mathbf{m}^*)\right)^{-1}$
- If σ is unknown but constant across measurements, take $\sigma_i = 1$ above and use for σ in $\frac{1}{\sigma^2} \left(\nabla \mathbf{F} \left(\mathbf{m}^* \right)^T \nabla \mathbf{F} \left(\mathbf{m}^* \right) \right)^{-1}$ the estimate

$$s^2 = \frac{1}{m-n} \sum_{i=1}^{m} (G(\mathbf{m}) - d_i)^2.$$

ullet Do confidence intervals, χ^2 statistic and p-value as in Chapter

2.

Outline

- Problem may have many local minima.
- Even if it has a unique solution, it might lie in a long flat basin.
- Analytical derivatives may not be available. This presents an interesting regularization issue not discussed by the authors.
 We do so at the board.
- One remedy for first problem: use many starting points and statistics to choose best local minimum.
- One remedy for second problem: use a better technique than GN or LM.
- Do Example 9.2 from the CD to illustrate some of these ideas.
- If time permits, do data fiting from Great Britian population data.

- Problem may have many local minima.
- Even if it has a unique solution, it might lie in a long flat basin.
- Analytical derivatives may not be available. This presents an interesting regularization issue not discussed by the authors.
 We do so at the board.
- One remedy for first problem: use many starting points and statistics to choose best local minimum.
- One remedy for second problem: use a better technique than GN or LM.
- Do Example 9.2 from the CD to illustrate some of these ideas.
- If time permits, do data fiting from Great Britian population data.

- Problem may have many local minima.
- Even if it has a unique solution, it might lie in a long flat basin.
- Analytical derivatives may not be available. This presents an interesting regularization issue not discussed by the authors.
 We do so at the board.
- One remedy for first problem: use many starting points and statistics to choose best local minimum.
- One remedy for second problem: use a better technique than GN or LM.
- Do Example 9.2 from the CD to illustrate some of these ideas.
- If time permits, do data fiting from Great Britian population data.

- Problem may have many local minima.
- Even if it has a unique solution, it might lie in a long flat basin.
- Analytical derivatives may not be available. This presents an interesting regularization issue not discussed by the authors.
 We do so at the board.
- One remedy for first problem: use many starting points and statistics to choose best local minimum.
- One remedy for second problem: use a better technique than GN or LM.
- Do Example 9.2 from the CD to illustrate some of these ideas
- If time permits, do data fiting from Great Britian population data.

- Problem may have many local minima.
- Even if it has a unique solution, it might lie in a long flat basin.
- Analytical derivatives may not be available. This presents an interesting regularization issue not discussed by the authors.
 We do so at the board.
- One remedy for first problem: use many starting points and statistics to choose best local minimum.
- One remedy for second problem: use a better technique than GN or LM.
- Do Example 9.2 from the CD to illustrate some of these ideas
- If time permits, do data fiting from Great Britian population data.

- Problem may have many local minima.
- Even if it has a unique solution, it might lie in a long flat basin.
- Analytical derivatives may not be available. This presents an interesting regularization issue not discussed by the authors.
 We do so at the board.
- One remedy for first problem: use many starting points and statistics to choose best local minimum.
- One remedy for second problem: use a better technique than GN or LM.
- Do Example 9.2 from the CD to illustrate some of these ideas
- If time permits, do data fiting from Great Britian population data.

- Problem may have many local minima.
- Even if it has a unique solution, it might lie in a long flat basin.
- Analytical derivatives may not be available. This presents an interesting regularization issue not discussed by the authors.
 We do so at the board.
- One remedy for first problem: use many starting points and statistics to choose best local minimum.
- One remedy for second problem: use a better technique than GN or LM.
- Do Example 9.2 from the CD to illustrate some of these ideas.
- If time permits, do data fiting from Great Britian population data.

- Problem may have many local minima.
- Even if it has a unique solution, it might lie in a long flat basin.
- Analytical derivatives may not be available. This presents an interesting regularization issue not discussed by the authors.
 We do so at the board.
- One remedy for first problem: use many starting points and statistics to choose best local minimum.
- One remedy for second problem: use a better technique than GN or LM.
- Do Example 9.2 from the CD to illustrate some of these ideas.
- If time permits, do data fiting from Great Britian population data.

Outline

Basic Problem:

- Recast: minimize $\|\mathbf{Gm} \mathbf{d}\|_2$ unconstrained least squares.
- Recast: minimize $\|G\mathbf{m} \mathbf{d}\|_2$ subject to $\|L\mathbf{m}\|_2 \le \epsilon$, where L is a damping matrix (e.g., L = I.)
- Recast: minimize $\|L\mathbf{m}\|_2$ subject to $\|\mathbf{G}\mathbf{m} \mathbf{d}\|_2 \le \delta$.
- Recast: (damped least squares) minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha^2 \|L\mathbf{m}\|_2^2$. This is also a **Tikhonov** regularization of the original problem, possibly higher order.
- Method of Lagrange multipliers doesn't care if G is nonlinear, so we can apply it as in Chapter 5 to show that these problems are essentially equivalent.
- A big difference: no linear normal equations for least squares

Basic Problem:

- ullet Recast: minimize $\|\mathbf{Gm} \mathbf{d}\|_2$ unconstrained least squares.
- Recast: minimize $\|G\mathbf{m} \mathbf{d}\|_2$ subject to $\|L\mathbf{m}\|_2 \le \epsilon$, where L is a damping matrix (e.g., L = I.)
- Recast: minimize $\|L\mathbf{m}\|_2$ subject to $\|\mathbf{G}\mathbf{m} \mathbf{d}\|_2 \le \delta$.
- Recast: (damped least squares) minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha^2 \|L\mathbf{m}\|_2^2$. This is also a **Tikhonov** regularization of the original problem, possibly higher order.
- Method of Lagrange multipliers doesn't care if G is nonlinear, so we can apply it as in Chapter 5 to show that these problems are essentially equivalent.
- A big difference: no linear normal equations for least squares

Basic Problem:

- Recast: minimize $\|\mathbf{Gm} \mathbf{d}\|_2$ unconstrained least squares.
- Recast: minimize $\|G\mathbf{m} \mathbf{d}\|_2$ subject to $\|L\mathbf{m}\|_2 \le \epsilon$, where L is a damping matrix (e.g., L = I.)
- Recast: minimize $\|L\mathbf{m}\|_2$ subject to $\|\mathbf{G}\mathbf{m} \mathbf{d}\|_2 \le \delta$.
- Recast: (damped least squares) minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha^2 \|L\mathbf{m}\|_2^2$. This is also a **Tikhonov** regularization of the original problem, possibly higher order.
- Method of Lagrange multipliers doesn't care if *G* is nonlinear, so we can apply it as in Chapter 5 to show that these problems are essentially equivalent.
- A big difference: no linear normal equations for least squares

Basic Problem:

- ullet Recast: minimize $\|\mathbf{Gm} \mathbf{d}\|_2$ unconstrained least squares.
- Recast: minimize $\|G\mathbf{m} \mathbf{d}\|_2$ subject to $\|L\mathbf{m}\|_2 \le \epsilon$, where L is a damping matrix (e.g., L = I.)
- Recast: minimize $\|L\mathbf{m}\|_2$ subject to $\|\mathbf{G}\mathbf{m} \mathbf{d}\|_2 \le \delta$.
- Recast: (damped least squares) minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha^2 \|L\mathbf{m}\|_2^2$. This is also a **Tikhonov** regularization of the original problem, possibly higher order.
- Method of Lagrange multipliers doesn't care if G is nonlinear, so we can apply it as in Chapter 5 to show that these problems are essentially equivalent.
- A big difference: no linear normal equations for least squares

Basic Problem:

- ullet Recast: minimize $\|\mathbf{Gm} \mathbf{d}\|_2$ unconstrained least squares.
- Recast: minimize $\|G\mathbf{m} \mathbf{d}\|_2$ subject to $\|L\mathbf{m}\|_2 \le \epsilon$, where L is a damping matrix (e.g., L = I.)
- Recast: minimize $\|L\mathbf{m}\|_2$ subject to $\|\mathbf{G}\mathbf{m} \mathbf{d}\|_2 \le \delta$.
- Recast: (damped least squares) minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha^2 \|L\mathbf{m}\|_2^2$. This is also a **Tikhonov** regularization of the original problem, possibly higher order.
- Method of Lagrange multipliers doesn't care if *G* is nonlinear, so we can apply it as in Chapter 5 to show that these problems are essentially equivalent.
- A big difference: no linear normal equations for least squares

Basic Problem:

- ullet Recast: minimize $\|\mathbf{Gm} \mathbf{d}\|_2$ unconstrained least squares.
- Recast: minimize $\|G\mathbf{m} \mathbf{d}\|_2$ subject to $\|L\mathbf{m}\|_2 \le \epsilon$, where L is a damping matrix (e.g., L = I.)
- Recast: minimize $\|L\mathbf{m}\|_2$ subject to $\|\mathbf{G}\mathbf{m} \mathbf{d}\|_2 \le \delta$.
- Recast: (damped least squares) minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha^2 \|L\mathbf{m}\|_2^2$. This is also a **Tikhonov** regularization of the original problem, possibly higher order.
- Method of Lagrange multipliers doesn't care if G is nonlinear, so we can apply it as in Chapter 5 to show that these problems are essentially equivalent.
- A big difference: no linear normal equations for least squares

Basic Problem:

- ullet Recast: minimize $\|\mathbf{Gm} \mathbf{d}\|_2$ unconstrained least squares.
- Recast: minimize $\|G\mathbf{m} \mathbf{d}\|_2$ subject to $\|L\mathbf{m}\|_2 \le \epsilon$, where L is a damping matrix (e.g., L = I.)
- Recast: minimize $\|L\mathbf{m}\|_2$ subject to $\|\mathbf{G}\mathbf{m} \mathbf{d}\|_2 \le \delta$.
- Recast: (damped least squares) minimize $\|G\mathbf{m} \mathbf{d}\|_2^2 + \alpha^2 \|L\mathbf{m}\|_2^2$. This is also a **Tikhonov** regularization of the original problem, possibly higher order.
- Method of Lagrange multipliers doesn't care if *G* is nonlinear, so we can apply it as in Chapter 5 to show that these problems are essentially equivalent.
- A big difference: no linear normal equations for least squares

Basic Idea:

- Regularize: $\|G(\mathbf{m}) \mathbf{d}\|_{2}^{2} + \alpha^{2} \|L\mathbf{m}\|_{2}^{2}$.
- Equivalently: minimize $\left\| \begin{bmatrix} G(\mathbf{m}) \mathbf{d} \\ \alpha L \mathbf{m} \end{bmatrix} \right\|_{2}^{2} \equiv \|H(\mathbf{m})\|_{2}^{2}$.
- Linearize: Compute the Jacobian of this vector function:

$$\nabla H\left(\mathbf{m}\right) = \begin{bmatrix} \nabla G\left(\mathbf{m}\right) \\ \alpha L \end{bmatrix}.$$

- The linear model of G near current guesstimate \mathbf{m}^k , with $\Delta \mathbf{m} = \mathbf{m} \mathbf{m}^k \colon G(\mathbf{m}) \approx G(\mathbf{m}) + \nabla G(\mathbf{m}) \Delta \mathbf{m}$.
- This leads to the system

$$\left(\nabla G\left(\mathbf{m}^{k}\right)^{T} \nabla G\left(\mathbf{m}^{k}\right) + \alpha^{2} L^{T} L\right) \Delta \mathbf{m} = -\nabla G\left(\mathbf{m}^{k}\right)^{T} \left(G\left(\mathbf{m}^{k}\right) - d\right) - \alpha^{2} L^{T} L \mathbf{m}^{k}$$

Basic Idea:

- Regularize: $\|G(\mathbf{m}) \mathbf{d}\|_{2}^{2} + \alpha^{2} \|L\mathbf{m}\|_{2}^{2}$.
- Equivalently: minimize $\left\| \begin{bmatrix} G(\mathbf{m}) \mathbf{d} \\ \alpha L \mathbf{m} \end{bmatrix} \right\|_{2}^{2} \equiv \|H(\mathbf{m})\|_{2}^{2}$.
- Linearize: Compute the Jacobian of this vector function:

$$\nabla H\left(\mathbf{m}\right) = \begin{bmatrix} \nabla G\left(\mathbf{m}\right) \\ \alpha L \end{bmatrix}.$$

- The linear model of G near current guesstimate \mathbf{m}^k , with $\Delta \mathbf{m} = \mathbf{m} \mathbf{m}^k \colon G(\mathbf{m}) \approx G(\mathbf{m}) + \nabla G(\mathbf{m}) \Delta \mathbf{m}$.
- This leads to the system

$$\left(\nabla G\left(\mathbf{m}^{k}\right)^{T} \nabla G\left(\mathbf{m}^{k}\right) + \alpha^{2} L^{T} L\right) \Delta \mathbf{m} = -\nabla G\left(\mathbf{m}^{k}\right)^{T} \left(G\left(\mathbf{m}^{k}\right) - d\right) - \alpha^{2} L^{T} L \mathbf{m}^{k}$$

Basic Idea:

- Regularize: $\|G(\mathbf{m}) \mathbf{d}\|_{2}^{2} + \alpha^{2} \|L\mathbf{m}\|_{2}^{2}$.
- Equivalently: minimize $\left\| \begin{bmatrix} G(\mathbf{m}) \mathbf{d} \\ \alpha L \mathbf{m} \end{bmatrix} \right\|_{2}^{2} \equiv \|H(\mathbf{m})\|_{2}^{2}$.
- Linearize: Compute the Jacobian of this vector function:

$$\nabla H(\mathbf{m}) = \begin{bmatrix} \nabla G(\mathbf{m}) \\ \alpha L \end{bmatrix}.$$

- The linear model of G near current guesstimate \mathbf{m}^k , with $\Delta \mathbf{m} = \mathbf{m} \mathbf{m}^k \colon G(\mathbf{m}) \approx G(\mathbf{m}) + \nabla G(\mathbf{m}) \Delta \mathbf{m}$.
- This leads to the system

$$\left(\nabla G\left(\mathbf{m}^{k}\right)^{T} \nabla G\left(\mathbf{m}^{k}\right) + \alpha^{2} L^{T} L\right) \Delta \mathbf{m} = -\nabla G\left(\mathbf{m}^{k}\right)^{T} \left(G\left(\mathbf{m}^{k}\right) - d\right) - \alpha^{2} L^{T} L \mathbf{m}^{k}$$

Basic Idea:

- Regularize: $\|G(\mathbf{m}) \mathbf{d}\|_{2}^{2} + \alpha^{2} \|L\mathbf{m}\|_{2}^{2}$.
- Equivalently: minimize $\left\| \begin{bmatrix} G(\mathbf{m}) \mathbf{d} \\ \alpha L \mathbf{m} \end{bmatrix} \right\|_{2}^{2} \equiv \|H(\mathbf{m})\|_{2}^{2}$.
- Linearize: Compute the Jacobian of this vector function:

$$\nabla H(\mathbf{m}) = \begin{bmatrix} \nabla G(\mathbf{m}) \\ \alpha L \end{bmatrix}.$$

- The linear model of G near current guesstimate \mathbf{m}^k , with $\Delta \mathbf{m} = \mathbf{m} \mathbf{m}^k \colon G(\mathbf{m}) \approx G(\mathbf{m}) + \nabla G(\mathbf{m}) \Delta \mathbf{m}$.
- This leads to the system

$$\left(\nabla G\left(\mathbf{m}^{k}\right)^{T} \nabla G\left(\mathbf{m}^{k}\right) + \alpha^{2} L^{T} L\right) \Delta \mathbf{m} = -\nabla G\left(\mathbf{m}^{k}\right)^{T} \left(G\left(\mathbf{m}^{k}\right) - d\right) - \alpha^{2} L^{T} L \mathbf{m}^{k}$$

Basic Idea:

- Regularize: $\|G(\mathbf{m}) \mathbf{d}\|_{2}^{2} + \alpha^{2} \|L\mathbf{m}\|_{2}^{2}$.
- Equivalently: minimize $\left\| \begin{bmatrix} G(\mathbf{m}) \mathbf{d} \\ \alpha L \mathbf{m} \end{bmatrix} \right\|_{2}^{2} \equiv \|H(\mathbf{m})\|_{2}^{2}$.
- Linearize: Compute the Jacobian of this vector function:

$$\nabla H(\mathbf{m}) = \begin{bmatrix} \nabla G(\mathbf{m}) \\ \alpha L \end{bmatrix}.$$

- The linear model of G near current guesstimate \mathbf{m}^k , with $\Delta \mathbf{m} = \mathbf{m} \mathbf{m}^k$: $G(\mathbf{m}) \approx G(\mathbf{m}) + \nabla G(\mathbf{m}) \Delta \mathbf{m}$.
- This leads to the system

$$\left(\nabla G\left(\mathbf{m}^{k}\right)^{T} \nabla G\left(\mathbf{m}^{k}\right) + \alpha^{2} L^{T} L\right) \Delta \mathbf{m} = -\nabla G\left(\mathbf{m}^{k}\right)^{T} \left(G\left(\mathbf{m}^{k}\right) - d\right)$$
$$= \alpha^{2} L^{T} L \mathbf{m}^{k}$$

Basic Idea:

- Regularize: $\|G(\mathbf{m}) \mathbf{d}\|_{2}^{2} + \alpha^{2} \|L\mathbf{m}\|_{2}^{2}$.
- Equivalently: minimize $\left\| \begin{bmatrix} G(\mathbf{m}) \mathbf{d} \\ \alpha L \mathbf{m} \end{bmatrix} \right\|_{2}^{2} \equiv \|H(\mathbf{m})\|_{2}^{2}$.
- Linearize: Compute the Jacobian of this vector function:

$$\nabla H(\mathbf{m}) = \begin{bmatrix} \nabla G(\mathbf{m}) \\ \alpha L \end{bmatrix}.$$

- The linear model of G near current guesstimate \mathbf{m}^k , with $\Delta \mathbf{m} = \mathbf{m} \mathbf{m}^k \colon G(\mathbf{m}) \approx G(\mathbf{m}) + \nabla G(\mathbf{m}) \Delta \mathbf{m}$.
- This leads to the system

$$\left(\nabla G\left(\mathbf{m}^{k}\right)^{T} \nabla G\left(\mathbf{m}^{k}\right) + \alpha^{2} L^{T} L\right) \Delta \mathbf{m} = -\nabla G\left(\mathbf{m}^{k}\right)^{T} \left(G\left(\mathbf{m}^{k}\right) - d\right) - \alpha^{2} L^{T} L \mathbf{m}^{k}$$

Outline

Basic Idea:

- Develop the linear model of $G(\mathbf{m})$ near \mathbf{m}^k : $G(\mathbf{m}) \approx G(\mathbf{m}^k) + \nabla G(\mathbf{m}^k)(\mathbf{m} \mathbf{m}^k)$
- Linearize $||G(\mathbf{m}) \mathbf{d}||_2^2 + \alpha^2 ||L\mathbf{m}||_2^2$ by making the above replacement for $G(\mathbf{m})$. Call the solution \mathbf{m}^{k+1} .
- This leads to the system $m^{k+1} = \left(\nabla G\left(\mathbf{m}^k\right)^T \nabla G\left(\mathbf{m}^k\right) + \alpha^2 L^T L\right)^{-1} \nabla G\left(\mathbf{m}^k\right)^T \widehat{\mathbf{d}}\left(\mathbf{m}^k\right),$ where $\widehat{\mathbf{d}}\left(\mathbf{m}^k\right) = d G\left(\mathbf{m}^k\right) + \nabla G\left(\mathbf{m}^k\right)^T \mathbf{m}^k$.
- The algorithm is to solve this equation with initial guess \mathbf{m}^0 , but at each iteration choose the largest value of α such that $\chi^2\left(\mathbf{m}^{k+1}\right) \leq \delta^2$. If none, pick value of α that minimizes χ^2 . Stop if/when sequence converges to solution with $\chi^2 \leq \delta^2$.

Basic Idea:

- Develop the linear model of $G(\mathbf{m})$ near \mathbf{m}^k : $G(\mathbf{m}) \approx G(\mathbf{m}^k) + \nabla G(\mathbf{m}^k)(\mathbf{m} \mathbf{m}^k)$
- Linearize $||G(\mathbf{m}) \mathbf{d}||_2^2 + \alpha^2 ||L\mathbf{m}||_2^2$ by making the above replacement for $G(\mathbf{m})$. Call the solution \mathbf{m}^{k+1} .
- This leads to the system $m^{k+1} = \left(\nabla G\left(\mathbf{m}^k\right)^T \nabla G\left(\mathbf{m}^k\right) + \alpha^2 L^T L\right)^{-1} \nabla G\left(\mathbf{m}^k\right)^T \widehat{\mathbf{d}}\left(\mathbf{m}^k\right),$ where $\widehat{\mathbf{d}}\left(\mathbf{m}^k\right) = d G\left(\mathbf{m}^k\right) + \nabla G\left(\mathbf{m}^k\right)^T \mathbf{m}^k$.
- The algorithm is to solve this equation with initial guess \mathbf{m}^0 , but at each iteration choose the largest value of α such that $\chi^2\left(\mathbf{m}^{k+1}\right) \leq \delta^2$. If none, pick value of α that minimizes χ^2 . Stop if/when sequence converges to solution with $\chi^2 \leq \delta^2$.

Basic Idea:

- Develop the linear model of $G(\mathbf{m})$ near \mathbf{m}^k : $G(\mathbf{m}) \approx G(\mathbf{m}^k) + \nabla G(\mathbf{m}^k)(\mathbf{m} \mathbf{m}^k)$
- Linearize $||G(\mathbf{m}) \mathbf{d}||_2^2 + \alpha^2 ||L\mathbf{m}||_2^2$ by making the above replacement for $G(\mathbf{m})$. Call the solution \mathbf{m}^{k+1} .
- This leads to the system $m^{k+1} = \left(\nabla G\left(\mathbf{m}^k\right)^T \nabla G\left(\mathbf{m}^k\right) + \alpha^2 L^T L\right)^{-1} \nabla G\left(\mathbf{m}^k\right)^T \widehat{\mathbf{d}}\left(\mathbf{m}^k\right),$ where $\widehat{\mathbf{d}}\left(\mathbf{m}^k\right) = d G\left(\mathbf{m}^k\right) + \nabla G\left(\mathbf{m}^k\right)^T \mathbf{m}^k$.
- The algorithm is to solve this equation with initial guess \mathbf{m}^0 , but at each iteration choose the largest value of α such that $\chi^2\left(\mathbf{m}^{k+1}\right) \leq \delta^2$. If none, pick value of α that minimizes χ^2 . Stop if/when sequence converges to solution with $\chi^2 \leq \delta^2$.

Basic Idea:

- Develop the linear model of $G(\mathbf{m})$ near \mathbf{m}^k : $G(\mathbf{m}) \approx G(\mathbf{m}^k) + \nabla G(\mathbf{m}^k)(\mathbf{m} \mathbf{m}^k)$
- Linearize $||G(\mathbf{m}) \mathbf{d}||_2^2 + \alpha^2 ||L\mathbf{m}||_2^2$ by making the above replacement for $G(\mathbf{m})$. Call the solution \mathbf{m}^{k+1} .
- This leads to the system $m^{k+1} = \left(\nabla G\left(\mathbf{m}^k\right)^T \nabla G\left(\mathbf{m}^k\right) + \alpha^2 L^T L\right)^{-1} \nabla G\left(\mathbf{m}^k\right)^T \widehat{\mathbf{d}}\left(\mathbf{m}^k\right),$ where $\widehat{\mathbf{d}}\left(\mathbf{m}^k\right) = d G\left(\mathbf{m}^k\right) + \nabla G\left(\mathbf{m}^k\right)^T \mathbf{m}^k.$
- The algorithm is to solve this equation with initial guess \mathbf{m}^0 , but at each iteration choose the largest value of α such that $\chi^2\left(\mathbf{m}^{k+1}\right) \leq \delta^2$. If none, pick value of α that minimizes χ^2 . Stop if/when sequence converges to solution with $\chi^2 \leq \delta^2$.

Basic Idea:

- Develop the linear model of $G(\mathbf{m})$ near \mathbf{m}^k : $G(\mathbf{m}) \approx G(\mathbf{m}^k) + \nabla G(\mathbf{m}^k)(\mathbf{m} \mathbf{m}^k)$
- Linearize $||G(\mathbf{m}) \mathbf{d}||_2^2 + \alpha^2 ||L\mathbf{m}||_2^2$ by making the above replacement for $G(\mathbf{m})$. Call the solution \mathbf{m}^{k+1} .
- This leads to the system $m^{k+1} = \left(\nabla G\left(\mathbf{m}^k\right)^T \nabla G\left(\mathbf{m}^k\right) + \alpha^2 L^T L\right)^{-1} \nabla G\left(\mathbf{m}^k\right)^T \widehat{\mathbf{d}}\left(\mathbf{m}^k\right),$ where $\widehat{\mathbf{d}}\left(\mathbf{m}^k\right) = d G\left(\mathbf{m}^k\right) + \nabla G\left(\mathbf{m}^k\right)^T \mathbf{m}^k$.
- The algorithm is to solve this equation with initial guess \mathbf{m}^0 , but at each iteration choose the largest value of α such that $\chi^2\left(\mathbf{m}^{k+1}\right) \leq \delta^2$. If none, pick value of α that minimizes χ^2 . Stop if/when sequence converges to solution with $\chi^2 < \delta^2$.