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Statistics

Problem is G (m) = d with least squares solution m∗ :

Now what? What statistics can we bring to bear on the problem?

We minimize ‖F (m)‖2 =
n∑
i=1

(G (m)− di )
2

σ2
i

Treat the linear model as locally accurate, so mis�t is
∇F = F (m + ∆m)− F (m∗) ≈ ∇F (m∗)∇m
Obtain covariance matrix

Cov (m∗) =
(
∇F (m∗)T ∇F (m∗)

)−1
If σ is unknown but constant across measurements, take

σi = 1 above and use for σ in 1
σ2

(
∇F (m∗)T ∇F (m∗)

)−1
the

estimate

s2 =
1

m − n

m∑
i=1

(G (m)− di )
2 .

Do con�dence intervals, χ2 statistic and p-value as in Chapter
2.
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Implementation Issues

What could go wrong?

Problem may have many local minima.

Even if it has a unique solution, it might lie in a long �at basin.

Analytical derivatives may not be available. This presents an
interesting regularization issue not discussed by the authors.
We do so at the board.

One remedy for �rst problem: use many starting points and
statistics to choose best local minimum.

One remedy for second problem: use a better technique than
GN or LM.

Do Example 9.2 from the CD to illustrate some of these ideas.

If time permits, do data �ting from Great Britian population
data.
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Penalized (Damped) Least Squares

Basic Problem:

Solve G (m) = d, where G is a nonlinear function. As usual, d will
have error and this may not be a well-posed problem. Assume
variables are scaled, so standard deviations of measurements are
incorporated. So we follow the same paths as in Chapter 5.

Recast: minimize ‖Gm− d‖2 � unconstrained least squares.

Recast: minimize ‖Gm− d‖2 subject to ‖Lm‖2≤ ε, where L
is a damping matrix (e.g., L = I .)

Recast: minimize ‖Lm‖2 subject to ‖Gm− d‖2 ≤ δ.

Recast: (damped least squares) minimize
‖Gm− d‖22 + α2 ‖Lm‖22. This is also a Tikhonov

regularization of the original problem, possibly higher order.

Method of Lagrange multipliers doesn't care if G is nonlinear,
so we can apply it as in Chapter 5 to show that these problems
are essentially equivalent.

A big di�erence: no linear normal equations for least squares
problem.
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Solution Methodology: Penalized Least Squares

Basic Idea:

Regularize, then linearize.

Regularize: ‖G (m)− d‖22 + α2 ‖Lm‖22.

Equivalently: minimize

∥∥∥∥[
G (m)− d

αLm

]∥∥∥∥2
2

≡ ‖H (m)‖22.

Linearize: Compute the Jacobian of this vector function:

∇H (m) =

[
∇G (m)

αL

]
.

The linear model of G near current guesstimate mk , with
∆m = m−mk : G (m) ≈ G (m) +∇G (m) ∆m.

This leads to the system(
∇G

(
m
k
)T ∇G (

m
k
)

+ α2
L
T
L

)
∆m = −∇G

(
m
k
)T (

G
(
m
k
)
− d

)
− α2

L
T
Lm

k
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Solution Methodology: An Output Least Squares

Basic Idea:

Linearize, then regularize. Authors call this method �Occam's
inversion� � it is a special type of output least squares.

Develop the linear model of G (m) near mk :

G (m) ≈ G
(
m

k
)

+∇G
(
mk

)(
m−mk

)
Linearize ‖G (m)− d‖22 + α2 ‖Lm‖22 by making the above
replacement for G (m). Call the solution mk+1.

This leads to the system mk+1 =(
∇G

(
mk

)T
∇G

(
mk

)
+ α2LTL

)−1
∇G

(
mk

)T
d̂

(
mk

)
,

where d̂
(
mk

)
= d − G

(
mk

)
+∇G

(
mk

)T
mk .

The algorithm is to solve this equation with initial guess m0,
but at each iteration choose the largest value of α such that
χ2

(
mk+1

)
≤ δ2. If none, pick value of α that minimizes χ2.

Stop if/when sequence converges to solution with χ2 ≤ δ2.
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