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Total Variation

Key Property:
@ TV doesn’t smooth discontinuities as much as Tikhonov
regularization.

Change startupfile path to Examples/chap7/examp3 execute it and
examp.
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@ Treat the linear model as locally accurate, so misfit is
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@ Obtain covariance matrix
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Statistics

Problem is G (m) = d with least squares solution m* :

Now what? What statistics can we bring to bear on the problem?
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@ Treat the linear model as locally accurate, so misfit is
VF =F(m+ Am) — F(m*) = VF(m*) Vm
@ Obtain covariance matrix
Cov (m*) = (VF(m*)TVF(m*))

@ If o is unknown but constant across measurements, take

e We minimize ||F (m)||

o; = 1 above and use for o in 01—2 (VF(m*)T VF (m*)) the
estimate

5" =

L3 (G (m) - 2.
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e Do confidence intervals, x? statistic and p-value as in Chapter
2.
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Implementation Issues
What could go wrong?

@ Problem may have many local minima.

@ Even if it has a unique solution, it might lie in a long flat basin.

@ Analytical derivatives may not be available. This presents an
interesting regularization issue not discussed by the authors.
We do so at the board.

@ One remedy for first problem: use many starting points and
statistics to choose best local minimum.

@ One remedy for second problem: use a better technique than
GN or LM.

@ Do Example 9.2 from the CD to illustrate some of these ideas.

o If time permits, do data fiting from Great Britian population
data.
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variables are scaled, so standard deviations of measurements are
incorporated. So we follow the same paths as in Chapter 5.
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Penalized (Damped) Least Squares

Basic Problem:
Solve G (m) =d, where G is a nonlinear function. As usual, d will
have error and this may not be a well-posed problem. Assume
variables are scaled, so standard deviations of measurements are
incorporated. So we follow the same paths as in Chapter 5.
@ Recast: minimize ||Gm — d||, — unconstrained least squares.
@ Recast: minimize ||Gm — d||, subject to ||Lml]|, <€, where L
is a damping matrix (e.g., L =1.)
© Recast: minimize ||Lml||, subject to ||Gm —d||, < 6.
@ Recast: (damped least squares) minimize
|Gm — d||§ + a? ||Lm||§ This is also a Tikhonov
regularization of the original problem, possibly higher order.
@ Method of Lagrange multipliers doesn’t care if G is nonlinear,
so we can apply it as in Chapter 5 to show that these problems
are essentially equivalent.

@ A big difference: no linear normal equations for least squares
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Regularize, then linearize.
o Regularize: ||G (m) —d||5 + a?||Lm]]3.

2
0 . I G (m) —d . 2
e Equivalently: minimize [ Lm ] ) = ||H (m)]]5.
@ Linearize: Compute the Jacobian of this vector function:
_| V6 (m)
VH(m) = { ol ]

@ The linear model of G near current guesstimate m¥, with
Am =m—-mX G(m)= G(m)+ VG (m)Am.

@ This leads to the system
(V6 (m)" V6 (m) +0?LTL) Am =~V G (m")" (G (m*) - d)

— LT Lm*
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Solution Methodology: An Output Least Squares

Linearize, then regularize. Authors call this method “Occam'’s
inversion” — it is a special type of output least squares.

o Develop the linear model of G (m) near m*:

G(m)~ G <mk> + VG (mk) (m —mk)

o Linearize |G (m) — d||3 4+ o2 ||Lm||5 by making the above
replacement for G (m). Call the solution m*+1,

o This leads to the system m**! =

T -1 T .
<VG (m*) V6 (m) + a2LTL> VG (mk) d (m),
~ T
where d (m*) = d — G (m*) + VG (m*) m*.
o The algorithm is to solve this equation with initial guess m°,
but at each iteration choose the largest value of a such that

x> (mk+1) < 62. If none, pick value of o that minimizes x?.
Stop if/when sequence converges to solution with x? < §2.
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