Name:\_\_\_\_

Score:\_

Instructions: Show your work in the spaces provided below for full credit. You must clearly identify answers and show supporting work to receive any credit. Exact answers (e.g.,  $\pi$ ) are preferred to inexact (e.g., 3.14), and you should make obvious simplifications. Point values of problems are given in parentheses. Notes or text in *any* form not allowed. Calculator is optional.

(6) **1.** (Exercise 13.5.3) Write two different iterated integrals for the volume of the tetrahedron cut off in the first octant by the plane 6x + 3y + 2z = 6. Sketch the solid. Solution.



From the graph we see that

$$\iiint_{D} 1 \cdot dV = \int_{0}^{1} \int_{0}^{2-2x} \int_{0}^{3-3x-\frac{3}{2}y} 1 \, dz \, dy \, dx$$
$$= \int_{0}^{2} \int_{0}^{1-\frac{1}{2}y} \int_{0}^{3-3x-\frac{3}{2}y} 1 \, dz \, dx \, dy$$
$$= \int_{0}^{3} \int_{0}^{2-\frac{2}{3}z} \int_{0}^{1-\frac{1}{2}y-\frac{1}{3}z} 1 \, dx \, dy \, dz.$$

(6) **2.** (Exercise 13.7.15) D is the solid inside the right circular cylinder whose base is the circle  $r = 2\sin\theta$  in the xy-plane and top is given by z = 4-y. Set up an iterated integral for  $\iiint_D f(x,y,z) dV$  in cylindrical coordinates in the order  $dz \, r \, dr \, d\theta$ . Sketch D. Solution.



Cylinder  $r = 2\sin\theta$  is the same as  $r^2 = 2r\sin\theta$ , that is,  $x^2 + y^2 = 2y$ ,  $x^2 + (y-1)^2 = 1$ , a circle of radius 1, center at (0,1). The bottom of the solid is z = 0 and the top is the plane z = 4 - y. Thus  $\iiint_{2\sin\theta} f(x,y,z) \, dV$  is the iterated integral  $\int_0^\pi \int_0^{2\sin\theta} \int_0^{4-r\sin\theta} f(r\cos\theta, r\sin\theta, z) \, r \, dz \, dr \, d\theta$ .

(8) **3.** (Exercise 5, Handout) Express the mass of an object inside the sphere  $x^2 + y^2 + z^2 = 4z$  and below the cone  $z = \sqrt{3x^2 + 3y^2}$  as an iterated integral in spherical coordinates, if the density is given by  $\delta(x, y, z) = \frac{1}{x^2 + y^2 + z^2}$ . Sketch the solid. Solution.



Complete the square to see the sphere is given by  $x^2 + y^2 + (z - 2)^2 = 4$ , so has radius 2, center at (0,0,2). In spherical coordinates it is

 $\rho^2=4\rho\cos\phi$  or  $\rho=4\cos\phi.$  Cone angle from the vertical is the same as the line  $z=\sqrt{3}y$  with the z-axis. Take y=1, get  $z=\sqrt{3}$ , 30-60-90 right triangle as in the graph, so angle  $\phi$  starts at  $\phi=\pi/6.$  Hence the mass is M=

$$\iiint_{D} \delta(x, y, z) dV = \int_{0}^{2\pi} \int_{\pi/6}^{\pi/2} \int_{0}^{4\cos\phi} \frac{1}{\rho^{2}} \rho^{2} \sin\phi \, d\rho \, d\phi \, d\theta 
= \int_{0}^{2\pi} \int_{\pi/6}^{\pi/2} \int_{0}^{4\cos\phi} \sin\phi \, d\rho \, d\phi \, d\theta$$