JDEP 384H: Numerical Methods in Business

Instructor: Thomas Shores Department of Mathematics

Lecture 10, February 8, 2007 110 Kaufmann Center

Outline

- Basic Financial Assets and Related Issues
 - Bond Portfolio Immunization (Revisited)

- 2 BT 2.4: Portfolio Optimization
 - Utility Theory
 - Mean-Variance Portfolio Optimization

Outline

- Basic Financial Assets and Related Issues
 - Bond Portfolio Immunization (Revisited)

- BT 2.4: Portfolio Optimization
 - Utility Theory
 - Mean-Variance Portfolio Optimization

Example

Use Matlab to determine the correct weighting of three bonds with durations 2, 4, 6 and convexities 12, 15, 20, respectively, if we are to shape a portfolio with duration 3 and convexity 13.

Solution. Use the First Pass strategy. Work this system out with Matlab. What happens if no short positions are allowed? What about the Second Pass?

With 3 bonds, we're stuck. But increase the number by, say one, to 4 bonds. Now we have a new situation of 3 equations in 4 unknowns. Since unknowns exceed equations, we can expect infinitely many solutions if any at all (see LinearAlgebraLecture)! So which do we select?

Idea: Use the extra degree(s) of freedom to turn the problem into a linear programming problem. For example, maximize the weighted yield of the portfolio. Say the bonds have yields Y_1, Y_2, Y_3, Y_4 . The problem becomes: Maximize the objective function

$$f(w_1, w_2, w_3, w_4) = Y_1w_1 + Y_2w_2 + Y_3w_3 + Y_3w_3 + Y_4w_4$$

subject the three constraints as in first pass with four variables.

An example portfolio consists of:

- Use Matlab to solve this problem. If there is a solution, what is the maximum yield?
- What if we relax the convexity constraint to having convexity at least 13? Portfolio yield?
- What if we drop the convexity constraint altogether? Portfolio yield and convexity?

Idea: Use the extra degree(s) of freedom to turn the problem into a linear programming problem. For example, maximize the weighted yield of the portfolio. Say the bonds have yields Y_1, Y_2, Y_3, Y_4 . The problem becomes: Maximize the objective function

$$f(w_1, w_2, w_3, w_4) = Y_1w_1 + Y_2w_2 + Y_3w_3 + Y_3w_3 + Y_4w_4$$

subject the three constraints as in first pass with four variables.

An example portfolio consists of:

- Use Matlab to solve this problem. If there is a solution, what is the maximum yield?
- What if we relax the convexity constraint to having convexity at least 13? Portfolio yield?
- What if we drop the convexity constraint altogether? Portfolio yield and convexity?

Idea: Use the extra degree(s) of freedom to turn the problem into a linear programming problem. For example, maximize the weighted yield of the portfolio. Say the bonds have yields Y_1, Y_2, Y_3, Y_4 . The problem becomes: Maximize the objective function

$$f(w_1, w_2, w_3, w_4) = Y_1w_1 + Y_2w_2 + Y_3w_3 + Y_3w_3 + Y_4w_4$$

subject the three constraints as in first pass with four variables.

An example portfolio consists of:

- Use Matlab to solve this problem. If there is a solution, what is the maximum yield?
- What if we relax the convexity constraint to having convexity at least 13? Portfolio yield?
- What if we drop the convexity constraint altogether? Portfolio vield and convexity?

Idea: Use the extra degree(s) of freedom to turn the problem into a linear programming problem. For example, maximize the weighted yield of the portfolio. Say the bonds have yields Y_1, Y_2, Y_3, Y_4 . The problem becomes: Maximize the objective function

$$f(w_1, w_2, w_3, w_4) = Y_1w_1 + Y_2w_2 + Y_3w_3 + Y_3w_3 + Y_4w_4$$

subject the three constraints as in first pass with four variables.

An example portfolio consists of:

- Use Matlab to solve this problem. If there is a solution, what is the maximum yield?
- What if we relax the convexity constraint to having convexity at least 13? Portfolio yield?
- What if we drop the convexity constraint altogether? Portfolio yield and convexity?

Outline

- Basic Financial Assets and Related Issues
 - Bond Portfolio Immunization (Revisited)

- 2 BT 2.4: Portfolio Optimization
 - Utility Theory
 - Mean-Variance Portfolio Optimization

We examine portfolios of **risky securities**, such as stocks. Note: In fact, bonds have an element of risk too!

Risk:

- The return on our investment is wealth X, which is now a random variable. So are the returns R_i of each stock in our portfolio.
- As such, returns have an **expected value** (mean) x = E[X] which is the weighted sum of the expected returns r_i of the ith stock.
- Variability of a r.v. is measured by its standard deviation. Hence the **risk** of the *i*th stock is just $\sigma_i = \sqrt{\text{Var}(R_i)}$.
- Competing goals: maximize return, minimize risk.

We examine portfolios of **risky securities**, such as stocks. Note: In fact, bonds have an element of risk too!

Risk:

- The return on our investment is wealth X, which is now a random variable. So are the returns R_i of each stock in our portfolio.
- As such, returns have an **expected value** (mean) x = E[X] which is the weighted sum of the expected returns r_i of the ith stock.
- Variability of a r.v. is measured by its standard deviation. Hence the **risk** of the *i*th stock is just $\sigma_i = \sqrt{\text{Var}(R_i)}$.
- Competing goals: maximize return, minimize risk.

We examine portfolios of **risky securities**, such as stocks. Note: In fact, bonds have an element of risk too!

Risk:

- The return on our investment is wealth X, which is now a random variable. So are the returns R; of each stock in our portfolio.
- As such, returns have an **expected value** (mean) x = E[X] which is the weighted sum of the expected returns r_i of the ith stock.
- Variability of a r.v. is measured by its standard deviation. Hence the **risk** of the *i*th stock is just $\sigma_i = \sqrt{\text{Var}(R_i)}$.
- Competing goals: maximize return, minimize risk.

We examine portfolios of **risky securities**, such as stocks. Note: In fact, bonds have an element of risk too!

Risk:

- The return on our investment is wealth X, which is now a random variable. So are the returns R_i of each stock in our portfolio.
- As such, returns have an **expected value** (mean) x = E[X] which is the weighted sum of the expected returns r_i of the ith stock.
- Variability of a r.v. is measured by its standard deviation. Hence the **risk** of the *i*th stock is just $\sigma_i = \sqrt{\text{Var}(R_i)}$.
- Competing goals: maximize return, minimize risk.

We examine portfolios of **risky securities**, such as stocks. Note: In fact, bonds have an element of risk too!

Risk:

- The return on our investment is wealth X, which is now a random variable. So are the returns R_i of each stock in our portfolio.
- As such, returns have an **expected value** (mean) x = E[X] which is the weighted sum of the expected returns r_i of the ith stock.
- Variability of a r.v. is measured by its standard deviation. Hence the **risk** of the *i*th stock is just $\sigma_i = \sqrt{\text{Var}(R_i)}$.
- Competing goals: maximize return, minimize risk.

One way to quantify an investor's preferences;

Utility Function u(x) of payoff x:

A numerical measure of satisfaction gained from a payoff x.

- Normally, u is monotone increasing with x.
- Normally, u is concave (concave down) implies that u''(x) < 0, which implies that u'(x) is decreasing.
- Hence concavity is a measure of risk aversion, because it implies that each increment to wealth conveys progressively smaller increments to utility.
- Two examples: $u(x) = \log x$ and $u(x) = x \frac{\lambda}{2}x^2$ $(x \le 1/\lambda)$.

There are other types of utility functions, e.g., we could have u depend on the expected rate of return and variance

One way to quantify an investor's preferences;

Utility Function u(x) of payoff x:

A numerical measure of satisfaction gained from a payoff x.

- ullet Normally, u is monotone increasing with x.
- Normally, u is concave (concave down) implies that u''(x) < 0, which implies that u'(x) is decreasing.
- Hence concavity is a measure of risk aversion, because it implies that each increment to wealth conveys progressively smaller increments to utility.
- Two examples: $u(x) = \log x$ and $u(x) = x \frac{\lambda}{2}x^2$ $(x \le 1/\lambda)$.

There are other types of utility functions, e.g., we could have u depend on the expected rate of return and variance

One way to quantify an investor's preferences;

Utility Function u(x) of payoff x:

A numerical measure of satisfaction gained from a payoff x.

- ullet Normally, u is monotone increasing with x.
- Normally, u is concave (concave down) implies that u''(x) < 0, which implies that u'(x) is decreasing.
- Hence concavity is a measure of risk aversion, because it implies that each increment to wealth conveys progressively smaller increments to utility.
- Two examples: $u(x) = \log x$ and $u(x) = x \frac{\lambda}{2}x^2$ $(x \le 1/\lambda)$.

There are other types of utility functions, e.g., we could have u depend on the expected rate of return and variance

One way to quantify an investor's preferences;

Utility Function u(x) of payoff x:

A numerical measure of satisfaction gained from a payoff x.

- Normally, u is monotone increasing with x.
- Normally, u is concave (concave down) implies that u''(x) < 0, which implies that u'(x) is decreasing.
- Hence concavity is a measure of risk aversion, because it implies that each increment to wealth conveys progressively smaller increments to utility.
- Two examples: $u(x) = \log x$ and $u(x) = x \frac{\lambda}{2}x^2$ $(x \le 1/\lambda)$.

There are other types of utility functions, e.g., we could have u depend on the expected rate of return and variance

One way to quantify an investor's preferences;

Utility Function u(x) of payoff x:

A numerical measure of satisfaction gained from a payoff x.

- Normally, u is monotone increasing with x.
- Normally, u is concave (concave down) implies that u''(x) < 0, which implies that u'(x) is decreasing.
- Hence concavity is a measure of risk aversion, because it implies that each increment to wealth conveys progressively smaller increments to utility.
- Two examples: $u(x) = \log x$ and $u(x) = x \frac{\lambda}{2}x^2$ $(x \le 1/\lambda)$.

There are other types of utility functions, e.g., we could have u depend on the expected rate of return and variance

Consequences of Utility Approach:

 Obtain measures of degree of risk aversion (Arrow-Pratt absolute and relative risk aversion coefficients):

$$R_u^a(x) = -\frac{u''(x)}{u'(x)}$$
 and $R_u^r(x) = -\frac{u''(x)x}{u'(x)}$

• Portfolio optimization becomes a math problem: Given initial wealth W_0 , a set of assets with return R_i (a random variable), and portfolio with x_i dollars of ith asset,

$$\max E\left[u\left(x_1R_1+\cdots+x_nR_n\right)\right]$$

subject to $x_1 + \cdots + x_n = W_0$.

Consequences of Utility Approach:

 Obtain measures of degree of risk aversion (Arrow-Pratt absolute and relative risk aversion coefficients):

$$R_u^a(x) = -rac{u''(x)}{u'(x)}$$
 and $R_u^r(x) = -rac{u''(x)x}{u'(x)}$

• Portfolio optimization becomes a math problem: Given initial wealth W_0 , a set of assets with return R_i (a random variable), and portfolio with x_i dollars of ith asset,

$$\max E \left[u \left(x_1 R_1 + \cdots + x_n R_n \right) \right]$$

subject to $x_1 + \cdots + x_n = W_0$.

Consequences of Utility Approach:

 Obtain measures of degree of risk aversion (Arrow-Pratt absolute and relative risk aversion coefficients):

$$R_{u}^{a}(x) = -\frac{u''(x)}{u'(x)}$$
 and $R'_{u}(x) = -\frac{u''(x)x}{u'(x)}$

• Portfolio optimization becomes a math problem: Given initial wealth W_0 , a set of assets with return R_i (a random variable), and portfolio with x_i dollars of ith asset,

$$\max E \left[u \left(x_1 R_1 + \cdots + x_n R_n \right) \right]$$

subject to $x_1 + \cdots + x_n = W_0$.

Outline

- Basic Financial Assets and Related Issues
 - Bond Portfolio Immunization (Revisited)

- 2 BT 2.4: Portfolio Optimization
 - Utility Theory
 - Mean-Variance Portfolio Optimization

- The absolute x_i above are replaced by fractions w_i , where $w_1 + w_2 = 1$ and we denote the vector $[w_1; w_2]$ by \mathbf{w} .
- Assume no short positions, so the $w_i \geq 0$.
- Rates of return on investments are r_1 , r_2 , respectively, so rate of return of portfolio is $r = w_1 r_1 + w_2 r_2$.
- The expected returns are \bar{r}_1 , \bar{r}_2 and $\bar{r}=w_1\bar{r}_1+w_2\bar{r}_2$.
- The r.v.'s r_1 , r_2 have covariance matrix Σ , so that the variance of our portfolio is

$$Var(w_1r_1 + w_2r_2) = \mathbf{w}^T \mathbf{\Sigma} \mathbf{w}.$$

- The absolute x_i above are replaced by fractions w_i , where $w_1 + w_2 = 1$ and we denote the vector $[w_1; w_2]$ by \mathbf{w} .
- Assume no short positions, so the $w_i \geq 0$.
- Rates of return on investments are r_1 , r_2 , respectively, so rate of return of portfolio is $r = w_1 r_1 + w_2 r_2$.
- The expected returns are \bar{r}_1 , \bar{r}_2 and $\bar{r}=w_1\bar{r}_1+w_2\bar{r}_2$.
- The r.v.'s r_1 , r_2 have covariance matrix Σ , so that the variance of our portfolio is

$$Var(w_1r_1 + w_2r_2) = \mathbf{w}^T \mathbf{\Sigma} \mathbf{w}.$$

- The absolute x_i above are replaced by fractions w_i , where $w_1 + w_2 = 1$ and we denote the vector $[w_1; w_2]$ by \mathbf{w} .
- Assume no short positions, so the $w_i \geq 0$.
- Rates of return on investments are r_1 , r_2 , respectively, so rate of return of portfolio is $r = w_1 r_1 + w_2 r_2$.
- The expected returns are \bar{r}_1 , \bar{r}_2 and $\bar{r}=w_1\bar{r}_1+w_2\bar{r}_2$.
- The r.v.'s r_1 , r_2 have covariance matrix Σ , so that the variance of our portfolio is

$$Var(w_1r_1 + w_2r_2) = \mathbf{w}^T \mathbf{\Sigma} \mathbf{w}.$$

- The absolute x_i above are replaced by fractions w_i , where $w_1 + w_2 = 1$ and we denote the vector $[w_1; w_2]$ by \mathbf{w} .
- Assume no short positions, so the $w_i \geq 0$.
- Rates of return on investments are r_1 , r_2 , respectively, so rate of return of portfolio is $r = w_1 r_1 + w_2 r_2$.
- The expected returns are \bar{r}_1 , \bar{r}_2 and $\bar{r}=w_1\bar{r}_1+w_2\bar{r}_2$.
- The r.v.'s r_1 , r_2 have covariance matrix Σ , so that the variance of our portfolio is

$$Var(w_1r_1 + w_2r_2) = \mathbf{w}^T \mathbf{\Sigma} \mathbf{w}.$$

- The absolute x_i above are replaced by fractions w_i , where $w_1 + w_2 = 1$ and we denote the vector $[w_1; w_2]$ by \mathbf{w} .
- Assume no short positions, so the $w_i \geq 0$.
- Rates of return on investments are r_1 , r_2 , respectively, so rate of return of portfolio is $r = w_1 r_1 + w_2 r_2$.
- The expected returns are \bar{r}_1 , \bar{r}_2 and $\bar{r}=w_1\bar{r}_1+w_2\bar{r}_2$.
- The r.v.'s r_1 , r_2 have covariance matrix Σ , so that the variance of our portfolio is

$$\operatorname{Var}(w_1r_1+w_2r_2)=\mathbf{w}^T\mathbf{\Sigma}\mathbf{w}.$$

Problems:

- For a given expected return \bar{r}_T , what weighting gives the minimum variance?
- Answer: the solution to the quadratic programming problem:

$$\min \mathbf{w}^T \Sigma \mathbf{w}$$

subject to

$$\mathbf{w}^T \mathbf{\bar{r}} = \mathbf{\bar{r}}_T$$

 $\mathbf{w}^T \mathbf{1} = \mathbf{1}$

Problems:

- For a given expected return \bar{r}_T , what weighting gives the minimum variance?
- Answer: the solution to the quadratic programming problem:

$$\min \mathbf{w}^T \Sigma \mathbf{w}$$

subject to

$$\mathbf{w}^T \mathbf{\bar{r}} = \bar{r}_T$$

 $\mathbf{w}^T \mathbf{1} = \mathbf{1}$

Problems:

- For a given expected return \bar{r}_T , what weighting gives the minimum variance?
- Answer: the solution to the quadratic programming problem:

$$\min \mathbf{w}^T \mathbf{\Sigma} \mathbf{w}$$

subject to

$$\mathbf{w}^T \mathbf{\bar{r}} = \bar{r}_T$$

 $\mathbf{w}^T \mathbf{1} = \mathbf{1}$

Problems:

- For a given expected return \bar{r}_T , what weighting gives the minimum variance?
- Answer: the solution to the quadratic programming problem:

$$\mathsf{min}\, \boldsymbol{w}^{\, T} \boldsymbol{\Sigma} \boldsymbol{w}$$

subject to

$$\mathbf{w}^T \mathbf{\bar{r}} = \bar{r}_T$$

 $\mathbf{w}^T \mathbf{1} = 1$

Definition

A portfolio is **efficient** if it is not possible to obtain a higher expected return without increasing the risk.

Definition

An efficient frontier is a graph of efficient portfolio's risk versus expected return.

Example

From text, p. 74, suppose two assets have expected earning rates $\bar{r}_1 = 0.2$, $\bar{r}_2 = 0.1$, $\sigma_1^2 = 0.2$, $\sigma_2^2 = 0.4$ and $\sigma_{12} = -0.1$. Design an efficient frontier for this problem using Matlab. How would we find the leftmost point on the graph?

Definition

A portfolio is **efficient** if it is not possible to obtain a higher expected return without increasing the risk.

Definition

An efficient frontier is a graph of efficient portfolio's risk versus expected return.

Example

From text, p. 74, suppose two assets have expected earning rates $\bar{r}_1 = 0.2$, $\bar{r}_2 = 0.1$, $\sigma_1^2 = 0.2$, $\sigma_2^2 = 0.4$ and $\sigma_{12} = -0.1$. Design an efficient frontier for this problem using Matlab. How would we find the leftmost point on the graph?

Definition

A portfolio is **efficient** if it is not possible to obtain a higher expected return without increasing the risk.

Definition

An efficient frontier is a graph of efficient portfolio's risk versus expected return.

Example

From text, p. 74, suppose two assets have expected earning rates $\bar{r}_1=0.2$, $\bar{r}_2=0.1$, $\sigma_1^2=0.2$, $\sigma_2^2=0.4$ and $\sigma_{12}=-0.1$. Design an efficient frontier for this problem using Matlab. How would we find the leftmost point on the graph?