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BT 2.4: Portfolio Optimization

Bond Portfolio Immunization (Revisited)

Immunization Strategies

Example

Use Matlab to determine the correct weighting of three bonds with

durations 2, 4, 6 and convexities 12, 15, 20, respectively, if we are to

shape a portfolio with duration 3 and convexity 13.

Solution. Use the First Pass strategy. Work this system out with

Matlab. What happens if no short positions are allowed?

What about the Second Pass?

With 3 bonds, we're stuck. But increase the number by, say one, to

4 bonds. Now we have a new situation of 3 equations in 4

unknowns. Since unknowns exceed equations, we can expect

in�nitely many solutions if any at all (see LinearAlgebraLecture)!

So which do we select?

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business



Immunization Strategies

Idea: Use the extra degree(s) of freedom to turn the problem into a

linear programming problem. For example, maximize the weighted

yield of the portfolio. Say the bonds have yields Y1,Y2,Y3,Y4. The

problem becomes: Maximize the objective function

f (w1,w2,w3,w4) = Y1w1 + Y2w2 + Y3w3 + Y3w3 + Y4w4

subject the the three constraints as in �rst pass with four variables.

An example portfolio consists of:

a weighted combination (no short positions) of four bonds with

durations 2, 3, 4, 6, convexities 12, 12.5, 15, 20, and yields

0.06, 0.061, 0.065, 0.07, respectively. How to maximize yield?

Use Matlab to solve this problem. If there is a solution, what

is the maximum yield?

What if we relax the convexity constraint to having convexity

at least 13? Portfolio yield?

What if we drop the convexity constraint altogether? Portfolio

yield and convexity?
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Utility Theory
Mean-Variance Portfolio Optimization

Quantifying Risk and Risk Tolerance

We examine portfolios of risky securities, such as stocks.

Note: In fact, bonds have an element of risk too!

Risk:

How can we measure risk?

The return on our investment is wealth X , which is now a

random variable. So are the returns Ri of each stock in our

portfolio.

As such, returns have an expected value (mean) x = E [X ]
which is the weighted sum of the expected returns ri of the ith

stock.

Variability of a r.v. is measured by its standard deviation.

Hence the risk of the ith stock is just σi =
√
Var (Ri ).

Competing goals: maximize return, minimize risk.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business
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So What Do You Want?

One way to quantify an investor's preferences;

Utility Function u (x) of payo� x :

A numerical measure of satisfaction gained from a payo� x .

Normally, u is monotone increasing with x .

Normally, u is concave (concave down) implies that

u′′ (x) < 0, which implies that u′ (x) is decreasing.

Hence concavity is a measure of risk aversion, because it

implies that each increment to wealth conveys progressively

smaller increments to utility.

Two examples: u (x) = log x and u (x) = x − λ

2
x
2 (x ≤ 1/λ).

There are other types of utility functions, e.g., we could have u

depend on the expected rate of return and variance

u = r − 0005 · A · σ2

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business
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So What Do You Want?

Consequences of Utility Approach:

Obtain measures of degree of risk aversion (Arrow-Pratt

absolute and relative risk aversion coe�cients):

R
a
u (x) = −u′′ (x)

u′ (x)
and R

r
u (x) = −u′′ (x) x

u′ (x)

Portfolio optimization becomes a math problem: Given initial

wealth W0, a set of assets with return Ri (a random variable),

and portfolio with xi dollars of ith asset,

maxE [u (x1R1 + · · ·+ xnRn)]

subject to x1 + · · ·+ xn = W0.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business
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Mean-Variance Portfolio Optimization

Following text, we'll stick to a portfolio of two risky assets for

purpose of illustration. Rather than use absolute quantities, we use

rates of return. For simplicity, examine a portfolio of two assets.

The absolute xi above are replaced by fractions wi , where

w1 + w2 = 1 and we denote the vector [w1;w2] by w.

Assume no short positions, so the wi ≥ 0.

Rates of return on investments are r1, r2, respectively, so rate

of return of portfolio is r = w1r1 + w2r2.

The expected returns are r̄1, r̄2 and r̄ = w1r̄1 + w2r̄2.

The r.v.'s r1, r2 have covariance matrix Σ, so that the variance

of our portfolio is

Var (w1r1 + w2r2) = wTΣw.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business
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Mean-Variance Portfolio Optimization

Problems:

For a given expected return r̄T , what weighting gives the

minimum variance?

Answer: the solution to the quadratic programming problem:

minwTΣw

subject to

wT r̄ = r̄T

wT1 = 1

What is the range of possible expected returns? Examine the

de�nition.
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Mean-Variance Portfolio Optimization

De�nition

A portfolio is e�cient if it is not possible to obtain a higher

expected return without increasing the risk.

De�nition

An e�cient frontier is a graph of e�cient portfolio's risk versus

expected return.

Example

From text, p. 74, suppose two assets have expected earning rates

r̄1 = 0.2, r̄2 = 0.1, σ2

1
= 0.2, σ2

2
= 0.4 and σ12 = −0.1. Design an

e�cient frontier for this problem using Matlab. How would we �nd

the leftmost point on the graph?
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