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A Model Problem

Dominant strategy elimination and the more general
maximin/minimax strategies will not solve the following problem.
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A Model Problem

The Problem:

Dominant strategy elimination and the more general
maximin/minimax strategies will not solve the following problem.
Player 2
Strategy 1 2 3
° 1 2 3 -2
Player 1 2 -1 4 0
3 3 -2 -1
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Solution:

Use mixed strategies instead of pure strategies, i.e., a probability
vector (xi,x2, x3) for player 1 (y = (y1, y2,y3) for player 2) that
maximizes for player 1 (minimizes for player 2) the payoff for all
possible plays by the opponent.
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Solution:

Use mixed strategies instead of pure strategies, i.e., a probability
vector (xi,x2, x3) for player 1 (y = (y1, y2,y3) for player 2) that
maximizes for player 1 (minimizes for player 2) the payoff for all
possible plays by the opponent.

o If the payoff table is converted into a matrix A (m x n in
general), then the payoff for any pair of mixed strategies is

p=X"Y] aixy = xT Ay

@ Player 1's goal: Find probability vector x solving

max min xTAy.
x oy

@ Player 2's goal: Find probability vector y solving

min maxx " Ay.
Yy X
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player 1 and min p subject to constraints Ay < plp1,y >0,
1; ,y = 1, for player 2. These linear programming problems
are dual to each other.
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a constant to every payoff so that the table is nonnegative,
computing the strategies and then subtracting the constant
from the computed optimal payoff.




Strategies

Linear Programming to the Rescue:

We can solve either problem of the previous frame with linear
programming tools as follows.

o Key fact: Both problems have a solution with common payoff
p. In fact, they solve the linear programming progams max p
subject to constraints xT A > ply ,, x>0, x 1,1 =1, for
player 1 and min p subject to constraints Ay < plp1,y >0,
1; ,y = 1, for player 2. These linear programming problems
are dual to each other.

@ Practical tip: We can also insure that p > 0 by simply adding
a constant to every payoff so that the table is nonnegative,
computing the strategies and then subtracting the constant
from the computed optimal payoff.

@ Let's set up all three examples as LP problems, both explicitly
and in matrix form, and solve them with Matlab to determine
optimal strategies for each game. Check requirements of
linprog first.
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A Sensitivity Analysis

The Original Model Problem:

Two companies compete for the bulk of a shared market for a
certain product and plan to execute one of three strategies. Both
marketing departments analyzed them and have arrived at
essentially the same figures for outcomes.
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essentially the same figures for outcomes.

@ The three strategies are:

o Better packaging.
e An advertising campaign.
e Slight price reduction.
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A Sensitivity Analysis

The Original Model Problem:

Two companies compete for the bulk of a shared market for a
certain product and plan to execute one of three strategies. Both
marketing departments analyzed them and have arrived at
essentially the same figures for outcomes.

@ The three strategies are:

o Better packaging.
e An advertising campaign.
e Slight price reduction.

@ Suppose there is considerable uncertainty about the payoff in
the case that both players make a slight reduction in price.
How could we clearly illustrate the effect of changes in the
payoff on the weight that one of the companies puts on this
strategy?
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