
BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

JDEP 384H: Numerical Methods in Business

Instructor: Thomas Shores

Department of Mathematics

Lecture 19, February 27, 2007

110 Kaufmann Center

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Outline

1 BT 3.1: Basics of Numerical Analysis

Finite Precision Representation

Error Analysis

2 BT 3.2: Linear Systems

Direct Methods

Iterative Methods

3 BT 3.3: Function Approximation

Polynomials

Splines

4 BT 3.4: Solving Nonlinear Systems

Univariate Problems

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Finite Precision Representation
Error Analysis

Outline

1 BT 3.1: Basics of Numerical Analysis

Finite Precision Representation

Error Analysis

2 BT 3.2: Linear Systems

Direct Methods

Iterative Methods

3 BT 3.3: Function Approximation

Polynomials

Splines

4 BT 3.4: Solving Nonlinear Systems

Univariate Problems

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Finite Precision Representation
Error Analysis

Outline

1 BT 3.1: Basics of Numerical Analysis

Finite Precision Representation

Error Analysis

2 BT 3.2: Linear Systems

Direct Methods

Iterative Methods

3 BT 3.3: Function Approximation

Polynomials

Splines

4 BT 3.4: Solving Nonlinear Systems

Univariate Problems

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Direct Methods
Iterative Methods

Outline

1 BT 3.1: Basics of Numerical Analysis

Finite Precision Representation

Error Analysis

2 BT 3.2: Linear Systems

Direct Methods

Iterative Methods

3 BT 3.3: Function Approximation

Polynomials

Splines

4 BT 3.4: Solving Nonlinear Systems

Univariate Problems

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Direct Methods
Iterative Methods

Outline

1 BT 3.1: Basics of Numerical Analysis

Finite Precision Representation

Error Analysis

2 BT 3.2: Linear Systems

Direct Methods

Iterative Methods

3 BT 3.3: Function Approximation

Polynomials

Splines

4 BT 3.4: Solving Nonlinear Systems

Univariate Problems

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Direct Methods
Iterative Methods

Iterative Methods for Linear Systems

Splitting:

A general procedure for developing iterations to solve Ax = b:

First write A = B − C , where solving By = d for y is easy.

Rewrite the system as (B − C) x = b, i.e., Bx = Cx + b.

Or x = B−1 (Cx + b) = B−1Cx + B−1b = Gx + d.

Now iterate on x(k+1) = Gx(k) + d.

Notation: spectral radius of matrix G is ρ (G), the maximum

absolute value of any eigenvalue of G .

Key Theorem: If ρ (G) < 1, or ρ (G) = 1 with exactly one

eigenvalue equal 1 and the others smaller than 1, then the

iterative method x(k+1) = Gx(k) + d is guaranteed to

converge; however, if ρ (G) > 1, method is guaranteed to

diverge for nearly all initial x(0).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Direct Methods
Iterative Methods

Iterative Methods for Linear Systems

Splitting:

A general procedure for developing iterations to solve Ax = b:

First write A = B − C , where solving By = d for y is easy.

Rewrite the system as (B − C) x = b, i.e., Bx = Cx + b.

Or x = B−1 (Cx + b) = B−1Cx + B−1b = Gx + d.

Now iterate on x(k+1) = Gx(k) + d.

Notation: spectral radius of matrix G is ρ (G), the maximum

absolute value of any eigenvalue of G .

Key Theorem: If ρ (G) < 1, or ρ (G) = 1 with exactly one

eigenvalue equal 1 and the others smaller than 1, then the

iterative method x(k+1) = Gx(k) + d is guaranteed to

converge; however, if ρ (G) > 1, method is guaranteed to

diverge for nearly all initial x(0).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Direct Methods
Iterative Methods

Iterative Methods for Linear Systems

Splitting:

A general procedure for developing iterations to solve Ax = b:

First write A = B − C , where solving By = d for y is easy.

Rewrite the system as (B − C) x = b, i.e., Bx = Cx + b.

Or x = B−1 (Cx + b) = B−1Cx + B−1b = Gx + d.

Now iterate on x(k+1) = Gx(k) + d.

Notation: spectral radius of matrix G is ρ (G), the maximum

absolute value of any eigenvalue of G .

Key Theorem: If ρ (G) < 1, or ρ (G) = 1 with exactly one

eigenvalue equal 1 and the others smaller than 1, then the

iterative method x(k+1) = Gx(k) + d is guaranteed to

converge; however, if ρ (G) > 1, method is guaranteed to

diverge for nearly all initial x(0).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Direct Methods
Iterative Methods

Iterative Methods for Linear Systems

Splitting:

A general procedure for developing iterations to solve Ax = b:

First write A = B − C , where solving By = d for y is easy.

Rewrite the system as (B − C) x = b, i.e., Bx = Cx + b.

Or x = B−1 (Cx + b) = B−1Cx + B−1b = Gx + d.

Now iterate on x(k+1) = Gx(k) + d.

Notation: spectral radius of matrix G is ρ (G), the maximum

absolute value of any eigenvalue of G .

Key Theorem: If ρ (G) < 1, or ρ (G) = 1 with exactly one

eigenvalue equal 1 and the others smaller than 1, then the

iterative method x(k+1) = Gx(k) + d is guaranteed to

converge; however, if ρ (G) > 1, method is guaranteed to

diverge for nearly all initial x(0).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Direct Methods
Iterative Methods

Iterative Methods for Linear Systems

Splitting:

A general procedure for developing iterations to solve Ax = b:

First write A = B − C , where solving By = d for y is easy.

Rewrite the system as (B − C) x = b, i.e., Bx = Cx + b.

Or x = B−1 (Cx + b) = B−1Cx + B−1b = Gx + d.

Now iterate on x(k+1) = Gx(k) + d.

Notation: spectral radius of matrix G is ρ (G), the maximum

absolute value of any eigenvalue of G .

Key Theorem: If ρ (G) < 1, or ρ (G) = 1 with exactly one

eigenvalue equal 1 and the others smaller than 1, then the

iterative method x(k+1) = Gx(k) + d is guaranteed to

converge; however, if ρ (G) > 1, method is guaranteed to

diverge for nearly all initial x(0).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Direct Methods
Iterative Methods

Iterative Methods for Linear Systems

Splitting:

A general procedure for developing iterations to solve Ax = b:

First write A = B − C , where solving By = d for y is easy.

Rewrite the system as (B − C) x = b, i.e., Bx = Cx + b.

Or x = B−1 (Cx + b) = B−1Cx + B−1b = Gx + d.

Now iterate on x(k+1) = Gx(k) + d.

Notation: spectral radius of matrix G is ρ (G), the maximum

absolute value of any eigenvalue of G .

Key Theorem: If ρ (G) < 1, or ρ (G) = 1 with exactly one

eigenvalue equal 1 and the others smaller than 1, then the

iterative method x(k+1) = Gx(k) + d is guaranteed to

converge; however, if ρ (G) > 1, method is guaranteed to

diverge for nearly all initial x(0).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Direct Methods
Iterative Methods

Iterative Methods for Linear Systems

Splitting:

A general procedure for developing iterations to solve Ax = b:

First write A = B − C , where solving By = d for y is easy.

Rewrite the system as (B − C) x = b, i.e., Bx = Cx + b.

Or x = B−1 (Cx + b) = B−1Cx + B−1b = Gx + d.

Now iterate on x(k+1) = Gx(k) + d.

Notation: spectral radius of matrix G is ρ (G), the maximum

absolute value of any eigenvalue of G .

Key Theorem: If ρ (G) < 1, or ρ (G) = 1 with exactly one

eigenvalue equal 1 and the others smaller than 1, then the

iterative method x(k+1) = Gx(k) + d is guaranteed to

converge; however, if ρ (G) > 1, method is guaranteed to

diverge for nearly all initial x(0).

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

Examples

Some Classical Splittings:

Write A = L(ower) + D(iagonal) + U(pper)

Jacobi: Dx = − (L + U) x + b, so
x(k+1) = −D−1 (L + U) x(k) + D−1b.

Gauss-Seidel: (L + D) x = −Ux + b, so
x(k+1) = − (L + D)−1 Ux(k) + (L + D)−1 b.

SOR: Given any iteration scheme x(k+1) = Gx(k) + d, speed it

up by x(k+1) = ω
(
Gx(k) + d

)
+ (1− ω)d, with 0 < ω < 2.

(What does ω = 1 give?)

GS-SOR: Apply SOR to Gauss-Seidel. This is the most famous

(and perhaps useful) example of SOR.

Let's try these on the example system given earlier, then check

spectral radius of each iteration matrix. Smaller spectral radius

means faster convergence.

Examples

Some Classical Splittings:

Write A = L(ower) + D(iagonal) + U(pper)

Jacobi: Dx = − (L + U) x + b, so
x(k+1) = −D−1 (L + U) x(k) + D−1b.

Gauss-Seidel: (L + D) x = −Ux + b, so
x(k+1) = − (L + D)−1 Ux(k) + (L + D)−1 b.

SOR: Given any iteration scheme x(k+1) = Gx(k) + d, speed it

up by x(k+1) = ω
(
Gx(k) + d

)
+ (1− ω)d, with 0 < ω < 2.

(What does ω = 1 give?)

GS-SOR: Apply SOR to Gauss-Seidel. This is the most famous

(and perhaps useful) example of SOR.

Let's try these on the example system given earlier, then check

spectral radius of each iteration matrix. Smaller spectral radius

means faster convergence.

Examples

Some Classical Splittings:

Write A = L(ower) + D(iagonal) + U(pper)

Jacobi: Dx = − (L + U) x + b, so
x(k+1) = −D−1 (L + U) x(k) + D−1b.

Gauss-Seidel: (L + D) x = −Ux + b, so
x(k+1) = − (L + D)−1 Ux(k) + (L + D)−1 b.

SOR: Given any iteration scheme x(k+1) = Gx(k) + d, speed it

up by x(k+1) = ω
(
Gx(k) + d

)
+ (1− ω)d, with 0 < ω < 2.

(What does ω = 1 give?)

GS-SOR: Apply SOR to Gauss-Seidel. This is the most famous

(and perhaps useful) example of SOR.

Let's try these on the example system given earlier, then check

spectral radius of each iteration matrix. Smaller spectral radius

means faster convergence.

Examples

Some Classical Splittings:

Write A = L(ower) + D(iagonal) + U(pper)

Jacobi: Dx = − (L + U) x + b, so
x(k+1) = −D−1 (L + U) x(k) + D−1b.

Gauss-Seidel: (L + D) x = −Ux + b, so
x(k+1) = − (L + D)−1 Ux(k) + (L + D)−1 b.

SOR: Given any iteration scheme x(k+1) = Gx(k) + d, speed it

up by x(k+1) = ω
(
Gx(k) + d

)
+ (1− ω)d, with 0 < ω < 2.

(What does ω = 1 give?)

GS-SOR: Apply SOR to Gauss-Seidel. This is the most famous

(and perhaps useful) example of SOR.

Let's try these on the example system given earlier, then check

spectral radius of each iteration matrix. Smaller spectral radius

means faster convergence.

Examples

Some Classical Splittings:

Write A = L(ower) + D(iagonal) + U(pper)

Jacobi: Dx = − (L + U) x + b, so
x(k+1) = −D−1 (L + U) x(k) + D−1b.

Gauss-Seidel: (L + D) x = −Ux + b, so
x(k+1) = − (L + D)−1 Ux(k) + (L + D)−1 b.

SOR: Given any iteration scheme x(k+1) = Gx(k) + d, speed it

up by x(k+1) = ω
(
Gx(k) + d

)
+ (1− ω)d, with 0 < ω < 2.

(What does ω = 1 give?)

GS-SOR: Apply SOR to Gauss-Seidel. This is the most famous

(and perhaps useful) example of SOR.

Let's try these on the example system given earlier, then check

spectral radius of each iteration matrix. Smaller spectral radius

means faster convergence.

Examples

Some Classical Splittings:

Write A = L(ower) + D(iagonal) + U(pper)

Jacobi: Dx = − (L + U) x + b, so
x(k+1) = −D−1 (L + U) x(k) + D−1b.

Gauss-Seidel: (L + D) x = −Ux + b, so
x(k+1) = − (L + D)−1 Ux(k) + (L + D)−1 b.

SOR: Given any iteration scheme x(k+1) = Gx(k) + d, speed it

up by x(k+1) = ω
(
Gx(k) + d

)
+ (1− ω)d, with 0 < ω < 2.

(What does ω = 1 give?)

GS-SOR: Apply SOR to Gauss-Seidel. This is the most famous

(and perhaps useful) example of SOR.

Let's try these on the example system given earlier, then check

spectral radius of each iteration matrix. Smaller spectral radius

means faster convergence.

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Direct Methods
Iterative Methods

Iterative Methods for Discrete Dynamical Systems

De�nition

A linear discrete dynamical system consists of an initial state

x(0) ∈ Rn, an n × n transition matrix A and a transition rule from

one state to the next given as

x(k+1) = Ax(k), k = 0, 1, 2, . . .

De�nition

A discrete Markov chain is a linear discrete dynamical system

such that each column of the transition matrix and the initial state

are probability distribution vectors, that is, their entries are

non-negative and sum to one.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Direct Methods
Iterative Methods

Iterative Methods for Discrete Dynamical Systems

De�nition

A linear discrete dynamical system consists of an initial state

x(0) ∈ Rn, an n × n transition matrix A and a transition rule from

one state to the next given as

x(k+1) = Ax(k), k = 0, 1, 2, . . .

De�nition

A discrete Markov chain is a linear discrete dynamical system

such that each column of the transition matrix and the initial state

are probability distribution vectors, that is, their entries are

non-negative and sum to one.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

Example

Example

Recall this example from Lecture 2: Two toothpaste companies

compete for customers in a �xed market in which each customer

uses either Brand A or Brand B. Market analysis shows that buying

habits of customers �t the following pattern in the quarters that

were analyzed: each quarter (three month period) 30% of A users

will switch to B, and rest stay with A. Also, 40% of B users will

switch to A, and rest will stay with B. Assume that this pattern

does not vary from quarter to quarter, and we have a Markov chain

model.

Solution. We expressed the problem in matrix form as

x(k) =

[
ak
bk

]
, A =

[
0.7 0.4
0.3 0.6

]
, x(k+1) = Ax(k),

treated this formula as �xed point iteration and found

experimentally a long-term state (4/7, 3/7), which was also an

eigenvector corresponding to eigenvalue λ = 1.

Probabilistic Interpretation

Finite State Discrete Stochastic Process:

Sequence of r.v.'s X0,X1,X2, . . ., where at the k-th stage the r.v.

Xk assumes integer values between 1 and n that corresponds to one

of n mutually exclusive states.

Thus each stage is described by a probability distribution

vector x(k) =
[
x

(k)
1

, x
(k)
2

, . . . , x
(k)
n

]
, where x

(k)
j is probability

that X (k) = j , that is, P
[
X (k) = j

]
= x

(k)
j .

FSD stochastic process {Xk}∞k=0
is a Markov chain if there is

a matrix of probabilities P = [pi ,j]n,n such that for all i , j , k ,

P
[
X (k+1) = i |X (k) = j

]
= pi ,j .

Thus, the columns of P are probability distribution vectors

(non-negative entries summing to 1).

By law of total probability: for all k ≥ 0, x(k+1) = Px(k).

Reinterpret the toothpaste example from this perspective.

Probabilistic Interpretation

Finite State Discrete Stochastic Process:

Sequence of r.v.'s X0,X1,X2, . . ., where at the k-th stage the r.v.

Xk assumes integer values between 1 and n that corresponds to one

of n mutually exclusive states.

Thus each stage is described by a probability distribution

vector x(k) =
[
x

(k)
1

, x
(k)
2

, . . . , x
(k)
n

]
, where x

(k)
j is probability

that X (k) = j , that is, P
[
X (k) = j

]
= x

(k)
j .

FSD stochastic process {Xk}∞k=0
is a Markov chain if there is

a matrix of probabilities P = [pi ,j]n,n such that for all i , j , k ,

P
[
X (k+1) = i |X (k) = j

]
= pi ,j .

Thus, the columns of P are probability distribution vectors

(non-negative entries summing to 1).

By law of total probability: for all k ≥ 0, x(k+1) = Px(k).

Reinterpret the toothpaste example from this perspective.

Probabilistic Interpretation

Finite State Discrete Stochastic Process:

Sequence of r.v.'s X0,X1,X2, . . ., where at the k-th stage the r.v.

Xk assumes integer values between 1 and n that corresponds to one

of n mutually exclusive states.

Thus each stage is described by a probability distribution

vector x(k) =
[
x

(k)
1

, x
(k)
2

, . . . , x
(k)
n

]
, where x

(k)
j is probability

that X (k) = j , that is, P
[
X (k) = j

]
= x

(k)
j .

FSD stochastic process {Xk}∞k=0
is a Markov chain if there is

a matrix of probabilities P = [pi ,j]n,n such that for all i , j , k ,

P
[
X (k+1) = i |X (k) = j

]
= pi ,j .

Thus, the columns of P are probability distribution vectors

(non-negative entries summing to 1).

By law of total probability: for all k ≥ 0, x(k+1) = Px(k).

Reinterpret the toothpaste example from this perspective.

Probabilistic Interpretation

Finite State Discrete Stochastic Process:

Sequence of r.v.'s X0,X1,X2, . . ., where at the k-th stage the r.v.

Xk assumes integer values between 1 and n that corresponds to one

of n mutually exclusive states.

Thus each stage is described by a probability distribution

vector x(k) =
[
x

(k)
1

, x
(k)
2

, . . . , x
(k)
n

]
, where x

(k)
j is probability

that X (k) = j , that is, P
[
X (k) = j

]
= x

(k)
j .

FSD stochastic process {Xk}∞k=0
is a Markov chain if there is

a matrix of probabilities P = [pi ,j]n,n such that for all i , j , k ,

P
[
X (k+1) = i |X (k) = j

]
= pi ,j .

Thus, the columns of P are probability distribution vectors

(non-negative entries summing to 1).

By law of total probability: for all k ≥ 0, x(k+1) = Px(k).

Reinterpret the toothpaste example from this perspective.

Probabilistic Interpretation

Finite State Discrete Stochastic Process:

Sequence of r.v.'s X0,X1,X2, . . ., where at the k-th stage the r.v.

Xk assumes integer values between 1 and n that corresponds to one

of n mutually exclusive states.

Thus each stage is described by a probability distribution

vector x(k) =
[
x

(k)
1

, x
(k)
2

, . . . , x
(k)
n

]
, where x

(k)
j is probability

that X (k) = j , that is, P
[
X (k) = j

]
= x

(k)
j .

FSD stochastic process {Xk}∞k=0
is a Markov chain if there is

a matrix of probabilities P = [pi ,j]n,n such that for all i , j , k ,

P
[
X (k+1) = i |X (k) = j

]
= pi ,j .

Thus, the columns of P are probability distribution vectors

(non-negative entries summing to 1).

By law of total probability: for all k ≥ 0, x(k+1) = Px(k).

Reinterpret the toothpaste example from this perspective.

Probabilistic Interpretation

Finite State Discrete Stochastic Process:

Sequence of r.v.'s X0,X1,X2, . . ., where at the k-th stage the r.v.

Xk assumes integer values between 1 and n that corresponds to one

of n mutually exclusive states.

Thus each stage is described by a probability distribution

vector x(k) =
[
x

(k)
1

, x
(k)
2

, . . . , x
(k)
n

]
, where x

(k)
j is probability

that X (k) = j , that is, P
[
X (k) = j

]
= x

(k)
j .

FSD stochastic process {Xk}∞k=0
is a Markov chain if there is

a matrix of probabilities P = [pi ,j]n,n such that for all i , j , k ,

P
[
X (k+1) = i |X (k) = j

]
= pi ,j .

Thus, the columns of P are probability distribution vectors

(non-negative entries summing to 1).

By law of total probability: for all k ≥ 0, x(k+1) = Px(k).

Reinterpret the toothpaste example from this perspective.

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Polynomials
Splines

Outline

1 BT 3.1: Basics of Numerical Analysis

Finite Precision Representation

Error Analysis

2 BT 3.2: Linear Systems

Direct Methods

Iterative Methods

3 BT 3.3: Function Approximation

Polynomials

Splines

4 BT 3.4: Solving Nonlinear Systems

Univariate Problems

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Polynomials
Splines

Polynomial Data Fitting

The Idea:

Since we love polynomials (they're easy functions), try to �t them

to a given set of data points:

Taylor polynomials: f (x) ≈ f (0) + f ′ (0) x + f ′′(0)
2! x2 + · · · .

Good locally, rotten globally.

Fact: given n data points Pi = (xi , yi), i = 1, . . . , n with

distinct abscissas xi , there is a unique polynomial p (x) that

interpolates these points, i.e., p (xi) = yi , i = 1, . . . , n.

Try a third degree Taylor polynomial and third degree �t with

poly�t on f (x) = ex , −2 ≤ x ≤ 2.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Polynomials
Splines

Polynomial Data Fitting

The Idea:

Since we love polynomials (they're easy functions), try to �t them

to a given set of data points:

Taylor polynomials: f (x) ≈ f (0) + f ′ (0) x + f ′′(0)
2! x2 + · · · .

Good locally, rotten globally.

Fact: given n data points Pi = (xi , yi), i = 1, . . . , n with

distinct abscissas xi , there is a unique polynomial p (x) that

interpolates these points, i.e., p (xi) = yi , i = 1, . . . , n.

Try a third degree Taylor polynomial and third degree �t with

poly�t on f (x) = ex , −2 ≤ x ≤ 2.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Polynomials
Splines

Polynomial Data Fitting

The Idea:

Since we love polynomials (they're easy functions), try to �t them

to a given set of data points:

Taylor polynomials: f (x) ≈ f (0) + f ′ (0) x + f ′′(0)
2! x2 + · · · .

Good locally, rotten globally.

Fact: given n data points Pi = (xi , yi), i = 1, . . . , n with

distinct abscissas xi , there is a unique polynomial p (x) that

interpolates these points, i.e., p (xi) = yi , i = 1, . . . , n.

Try a third degree Taylor polynomial and third degree �t with

poly�t on f (x) = ex , −2 ≤ x ≤ 2.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Polynomials
Splines

Polynomial Data Fitting

The Idea:

Since we love polynomials (they're easy functions), try to �t them

to a given set of data points:

Taylor polynomials: f (x) ≈ f (0) + f ′ (0) x + f ′′(0)
2! x2 + · · · .

Good locally, rotten globally.

Fact: given n data points Pi = (xi , yi), i = 1, . . . , n with

distinct abscissas xi , there is a unique polynomial p (x) that

interpolates these points, i.e., p (xi) = yi , i = 1, . . . , n.

Try a third degree Taylor polynomial and third degree �t with

poly�t on f (x) = ex , −2 ≤ x ≤ 2.

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

Example

Let's do some calculation with polynomial objects in Matlab:

> x = [-2 -1 1 2]

> y = exp(x)

> plot(x,y,'o'),grid,hold on

> plot(x,y)

> poly = polyfit(x,y,4)

> xx = -2:.1:2;

> plot(xx,polyval(poly,xx))

> plot(xx,exp(xx))

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Polynomials
Splines

Outline

1 BT 3.1: Basics of Numerical Analysis

Finite Precision Representation

Error Analysis

2 BT 3.2: Linear Systems

Direct Methods

Iterative Methods

3 BT 3.3: Function Approximation

Polynomials

Splines

4 BT 3.4: Solving Nonlinear Systems

Univariate Problems

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Polynomials
Splines

Other Methods

Other Models of Curve Fitting:

Rational functions p (x) /q (x), where p (x) , q (x) are

polynomials. These �ttings get very complicated.

Splines: functions P (x) that are polynomials in between

�knots� x1, x2, . . . , xn and �tted as smoothly as possible at the

knots. Most useful:

Linear splines: we've all used them; they are �dot-to-dots�.

Cubic splines 1: (Natural cubic splines) minimize �wiggle� in

a curve, but not the most accurate cubic spline. Second

derivatives at the endpoints are zero, which may be incorrect.

Cubic splines 2: (Clamped cubic splines) Match derivatives

at endpoints and interpolate all points.

Cubic splines 3: (Not-a-knot cubic splines) Fake clamping

by using two next to endpoints not as knots. Matlab default.
Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Polynomials
Splines

Other Methods

Other Models of Curve Fitting:

Rational functions p (x) /q (x), where p (x) , q (x) are

polynomials. These �ttings get very complicated.

Splines: functions P (x) that are polynomials in between

�knots� x1, x2, . . . , xn and �tted as smoothly as possible at the

knots. Most useful:

Linear splines: we've all used them; they are �dot-to-dots�.

Cubic splines 1: (Natural cubic splines) minimize �wiggle� in

a curve, but not the most accurate cubic spline. Second

derivatives at the endpoints are zero, which may be incorrect.

Cubic splines 2: (Clamped cubic splines) Match derivatives

at endpoints and interpolate all points.

Cubic splines 3: (Not-a-knot cubic splines) Fake clamping

by using two next to endpoints not as knots. Matlab default.
Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Polynomials
Splines

Other Methods

Other Models of Curve Fitting:

Rational functions p (x) /q (x), where p (x) , q (x) are

polynomials. These �ttings get very complicated.

Splines: functions P (x) that are polynomials in between

�knots� x1, x2, . . . , xn and �tted as smoothly as possible at the

knots. Most useful:

Linear splines: we've all used them; they are �dot-to-dots�.

Cubic splines 1: (Natural cubic splines) minimize �wiggle� in

a curve, but not the most accurate cubic spline. Second

derivatives at the endpoints are zero, which may be incorrect.

Cubic splines 2: (Clamped cubic splines) Match derivatives

at endpoints and interpolate all points.

Cubic splines 3: (Not-a-knot cubic splines) Fake clamping

by using two next to endpoints not as knots. Matlab default.
Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Polynomials
Splines

Other Methods

Other Models of Curve Fitting:

Rational functions p (x) /q (x), where p (x) , q (x) are

polynomials. These �ttings get very complicated.

Splines: functions P (x) that are polynomials in between

�knots� x1, x2, . . . , xn and �tted as smoothly as possible at the

knots. Most useful:

Linear splines: we've all used them; they are �dot-to-dots�.

Cubic splines 1: (Natural cubic splines) minimize �wiggle� in

a curve, but not the most accurate cubic spline. Second

derivatives at the endpoints are zero, which may be incorrect.

Cubic splines 2: (Clamped cubic splines) Match derivatives

at endpoints and interpolate all points.

Cubic splines 3: (Not-a-knot cubic splines) Fake clamping

by using two next to endpoints not as knots. Matlab default.
Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Polynomials
Splines

Other Methods

Other Models of Curve Fitting:

Rational functions p (x) /q (x), where p (x) , q (x) are

polynomials. These �ttings get very complicated.

Splines: functions P (x) that are polynomials in between

�knots� x1, x2, . . . , xn and �tted as smoothly as possible at the

knots. Most useful:

Linear splines: we've all used them; they are �dot-to-dots�.

Cubic splines 1: (Natural cubic splines) minimize �wiggle� in

a curve, but not the most accurate cubic spline. Second

derivatives at the endpoints are zero, which may be incorrect.

Cubic splines 2: (Clamped cubic splines) Match derivatives

at endpoints and interpolate all points.

Cubic splines 3: (Not-a-knot cubic splines) Fake clamping

by using two next to endpoints not as knots. Matlab default.
Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Polynomials
Splines

Other Methods

Other Models of Curve Fitting:

Rational functions p (x) /q (x), where p (x) , q (x) are

polynomials. These �ttings get very complicated.

Splines: functions P (x) that are polynomials in between

�knots� x1, x2, . . . , xn and �tted as smoothly as possible at the

knots. Most useful:

Linear splines: we've all used them; they are �dot-to-dots�.

Cubic splines 1: (Natural cubic splines) minimize �wiggle� in

a curve, but not the most accurate cubic spline. Second

derivatives at the endpoints are zero, which may be incorrect.

Cubic splines 2: (Clamped cubic splines) Match derivatives

at endpoints and interpolate all points.

Cubic splines 3: (Not-a-knot cubic splines) Fake clamping

by using two next to endpoints not as knots. Matlab default.
Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Polynomials
Splines

Other Methods

Other Models of Curve Fitting:

Rational functions p (x) /q (x), where p (x) , q (x) are

polynomials. These �ttings get very complicated.

Splines: functions P (x) that are polynomials in between

�knots� x1, x2, . . . , xn and �tted as smoothly as possible at the

knots. Most useful:

Linear splines: we've all used them; they are �dot-to-dots�.

Cubic splines 1: (Natural cubic splines) minimize �wiggle� in

a curve, but not the most accurate cubic spline. Second

derivatives at the endpoints are zero, which may be incorrect.

Cubic splines 2: (Clamped cubic splines) Match derivatives

at endpoints and interpolate all points.

Cubic splines 3: (Not-a-knot cubic splines) Fake clamping

by using two next to endpoints not as knots. Matlab default.
Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

Examples

Let's do some calculations for a given data set:

> x=1:10

> y=[4, 2.5, -2, -1, 2, 5, 4, 6, 4.5, 3]

> plot(x,y,'o'),grid,hold on

> plot(x,y)

> poly = polyfit(x,y,9)

> xx = 1:.01:10;

> plot(xx,polyval(poly,xx))

> spln = spline(x,y)

> plot(xx,ppval(spln,xx))

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Univariate Problems

Outline

1 BT 3.1: Basics of Numerical Analysis

Finite Precision Representation

Error Analysis

2 BT 3.2: Linear Systems

Direct Methods

Iterative Methods

3 BT 3.3: Function Approximation

Polynomials

Splines

4 BT 3.4: Solving Nonlinear Systems

Univariate Problems

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Univariate Problems

Root Finding for Univariate Functions

Basic Problem:

Given an equation f (x) = 0 that we cannot solve explicitly for real

number x with algebra or calculus. How do we �nd a solution

(given that there is one)?

There are many classical numerical methods. One of them is

Newton's method: start with an initial guess x0 and iterate

xk+1 = xk − f (xk) /f ′ (xk)

Another classical method is bisection: Find an interval where

f (x) changes sign and bisect it iteratively, preserving the sign

change.

Matlab has a built-in function fzero that uses a bisection type

method and no derivative information.

Solve f (x) = 0 numerically, where f (x) = x − 2 sin (x), on
the interval [0, 3].

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Univariate Problems

Root Finding for Univariate Functions

Basic Problem:

Given an equation f (x) = 0 that we cannot solve explicitly for real

number x with algebra or calculus. How do we �nd a solution

(given that there is one)?

There are many classical numerical methods. One of them is

Newton's method: start with an initial guess x0 and iterate

xk+1 = xk − f (xk) /f ′ (xk)

Another classical method is bisection: Find an interval where

f (x) changes sign and bisect it iteratively, preserving the sign

change.

Matlab has a built-in function fzero that uses a bisection type

method and no derivative information.

Solve f (x) = 0 numerically, where f (x) = x − 2 sin (x), on
the interval [0, 3].

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Univariate Problems

Root Finding for Univariate Functions

Basic Problem:

Given an equation f (x) = 0 that we cannot solve explicitly for real

number x with algebra or calculus. How do we �nd a solution

(given that there is one)?

There are many classical numerical methods. One of them is

Newton's method: start with an initial guess x0 and iterate

xk+1 = xk − f (xk) /f ′ (xk)

Another classical method is bisection: Find an interval where

f (x) changes sign and bisect it iteratively, preserving the sign

change.

Matlab has a built-in function fzero that uses a bisection type

method and no derivative information.

Solve f (x) = 0 numerically, where f (x) = x − 2 sin (x), on
the interval [0, 3].

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Univariate Problems

Root Finding for Univariate Functions

Basic Problem:

Given an equation f (x) = 0 that we cannot solve explicitly for real

number x with algebra or calculus. How do we �nd a solution

(given that there is one)?

There are many classical numerical methods. One of them is

Newton's method: start with an initial guess x0 and iterate

xk+1 = xk − f (xk) /f ′ (xk)

Another classical method is bisection: Find an interval where

f (x) changes sign and bisect it iteratively, preserving the sign

change.

Matlab has a built-in function fzero that uses a bisection type

method and no derivative information.

Solve f (x) = 0 numerically, where f (x) = x − 2 sin (x), on
the interval [0, 3].

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

BT 3.1: Basics of Numerical Analysis
BT 3.2: Linear Systems

BT 3.3: Function Approximation
BT 3.4: Solving Nonlinear Systems

Univariate Problems

Root Finding for Univariate Functions

Basic Problem:

Given an equation f (x) = 0 that we cannot solve explicitly for real

number x with algebra or calculus. How do we �nd a solution

(given that there is one)?

There are many classical numerical methods. One of them is

Newton's method: start with an initial guess x0 and iterate

xk+1 = xk − f (xk) /f ′ (xk)

Another classical method is bisection: Find an interval where

f (x) changes sign and bisect it iteratively, preserving the sign

change.

Matlab has a built-in function fzero that uses a bisection type

method and no derivative information.

Solve f (x) = 0 numerically, where f (x) = x − 2 sin (x), on
the interval [0, 3].

Instructor: Thomas Shores Department of Mathematics JDEP 384H: Numerical Methods in Business

Matlab Calculations

> help fzero

> myfcn = @(x) x-2*sin(x) % an �anonymous� function

> x = 0:.01:3;

> plot(x,myfcn(x))

> grid

> fzero(myfcn,0.5)

> fzero(myfcn,3)

> [x,y,exitflag,output] = fzero(myfcn,3)

> % now give Newton a spin

> x = 3;

> x = x - myfcn(x)/(1-2*cos(x)) % iterate this line

Example

Example

A home buyer can a�ord monthly payments of at most $900. What

is the maximum interest rate that the buyer can a�ord to pay on a

$200000 house (after the down) with a 25 year mortgage. The

ordinary annuity equation is helpful:

A =
P

i

(
1− (1 + i)−n

)
where A is the mortgage amount, P the monthly payment and i is

the interest rate per period over the n payment periods. The

unknown is i .

> P = 900

> A = 100000

> n = 12*15

> % let's make an anonymous function:

> fcn = @(i) i*A - P*(1 - 1/(1+i)^n)

> r = fzero(fcn,0.01)*12

	BT 3.1: Basics of Numerical Analysis
	Finite Precision Representation
	Error Analysis

	BT 3.2: Linear Systems
	Direct Methods
	Iterative Methods

	BT 3.3: Function Approximation
	Polynomials
	Splines

	BT 3.4: Solving Nonlinear Systems
	Univariate Problems

