Numerical Analysis for the Black-Scholes
Model

References:

1. (text) P. Wilmott, S. Howison and J. Dewynne,
The Mathematics of Financial Derivatives (Ch.
5, 7, 9), Cambridge University Press (1995).

2. C. Elliot and J. Ockendon, Weak and Vari-
ational Methods for Moving Boundary Prob-
lems, Pittman Publishing (1982).

3. R. White, An Introduction to the Finite El-
ement Methods with Applications to Nonlinear
Problems, John Wiley and Sons (1985).

4. T. Shores, Numerical Partial Differential
Equations: An Introduction, lecture notes avail-
able in Public directory (2003).



OUTLINE OF THESE LECTURES:

1. Black-Sholes Model for American Options

(a) Overview

(b) Transformations

2. Variational Inequalities

(a) Elliptic Problems

(b) Parabolic Problems

3. Numerical Solutions to Variational Inequalities

(a) Elliptic Problems
(b) Numerical ODEs

(c) Parabolic Problems

4. Numerical Experiments



1: Black-Scholes Model for American Op-
tions

(a) Overview.

With notation

e S: asset price;

e t: time;

e V(S,t): value of an option V = C for a call
and V = P for a put;

e o: volatility of underlying asset;

e F: exercise price;

o I expiry time;



Black-Scholes for American option reduces to
existence of an asset price S;(¢) for each time ¢
(a “free boundary’’) such that the option should
not be exercised on one side of S;(¢) and should
on the other side, so that S¢(t) is an optimal
price. Specifically, set FF' =S5 — F if the option
isacall and F = FE — S if the option is a put.
Then V(S,t) must always satisfy the constraint

V(S,t) > max{F,0}.

Where the constraint is an equality, we have a
Black-Scholes inequality

ov 1 262V oV
S— —rV <0
ot T a2 T s T

and where the constraint is strict, we have the
Black-Scholes equality

ov 1 282V oV
S— —rV =0.
o T a2 T s T

We also have the usual boundary and initial
conditions of the calls and puts.



About calls...

Does the free boundary even exist? If not,
the option should not be exercised immediately
(arbitrage), so it is optimal to wait until the
expiry date to exercise it and the American
option reduces to an European option. We
have:

® American put: ves, there is a free boundary.

e American call with constant dividend 0 < Dg(< r):
yes.

® American call without dividends: no.

In the case that there is a free boundary, we
need extra conditions at the free boundary that
help to specify it, namely that V(S,t) is smooth
there with

oV

—(S¢(t),t) = £1

ECION)

using + for a call and — for a put.



(b) Transformations.

To keep things simple, we'll focus on American
puts, since American calls with dividend require
slightly different substitutions (see text, Sec-
tion 6.2.2). Recall (Section 5.4 of text) that
we make the substitutions

1
S=Ee$, t:T—T/EO'Q, P = Eeax—l_ﬁTu(xaT))
where
1 5 1 1 2

k=r/=0% a=—-—(k—1), B=—--(k+1

r/50% a=—s(k=1), 8= (k+1)
and
9(z, ) = o7 (k41)27 max{eé(k—l)x_eé(k—l—l)xjo}.

One obtains the Black-Scholes equation and
boundary/initial conditions in the much sim-
pler form

ou 02u cp< -0
— = ——, —oo<r<oo, T :
oT Ox2

U(ZU,O) — g(a:,O), —o0o << oo,

9(0077-)7 T > 07
g(oo,7), 7> 0.

u(—o0, T7)

u(oo, T)



In practice, we replace oo by +xp, where
IS large. Also, the constraint condition trans-
forms to

u(z,7) > g(x,7)

and the free boundary transforms to z () and
the smoothness condition on P(S,t) carries over
to u(x, 7).

Finally, where the constraint is an equality, we

have a Black-Scholes inequality
ou  0%u ou  O%u
——+—=<00r ———=5>0
oT T Ox2 oOr Ozx2
and where the constraint is strict, we have the
equality
ou  O%u .

ey
or Ox?



Notice that this *classical problem”, consisting
of an inequality constraint on the smooth solu-
tion, a PDE which the solution satisfies on the
region of strict inequality, boundary and initial
conditions, is exactly equivalent to a so-called
linear complementarity problem

ou B 02u
or Ox2

ou  O%u
>0,
or Ox2 —

u—g > 0.

The big advantage of this latter formulation is
that there is no mention of the free boundary.
It is computed a posteriori from the computed
solution to the linear complementarity prob-
lem. Now imagine for a moment that for some
strange reason we actually knew what Ou/0T
were, say du/0r = f. (Odd, but we have ul-
terior motives, so play along with it.) This is
the sort of problem we want to tackle in the
next section.



2: Variational Inequalities
(a) Elliptic Problems.

The problem we are going to consider is a so-
called obstacle problem, though this entire dis-
cussion carries over to more complicated sec-
ond order elliptic boundary value problems in
a rather abstract setting (see White's text ref.
3) for a really nice but gentle presentation of
the more abstract setting. Here's a picture of
a possible scenario:



Imagine an ideal string in steady state lying
over an obstacle with tension 7' and a pressure
function p(x), 0 <z < 1. Let f(x) = p(x)/T.
Let u(x) be the vertical displacement of the
string and g(x) the graph of the smooth ob-
stacle. Suppose the string is fastened at height
zero on both sides away from the obstacle, say
at points (0,0) and (1,0). Let D be the set of
points in (0,1) at which the string makes con-
tact with the obstacle. We also suppose that
the obstacle is sufficiently convex at points of
contact, that is, —gzz > f(x) for x € D. For
f(x) < 0 (downward pressure) this is a vacu-
ous hypothesis. We also want to allow for the
possibility that there is a force proportional to
the displacement acting on the string as well,
say —cu, where ¢ > 0.



Classical Formulation: Find a function u(x)
with continuous second derivative that satisfies

—uge +cu= f on [0,1]\D,

U = g on D,
—Ugy +cu > f on [O,l],
v > g on][0,1],
u(0) = 0,
u(1) = 0.

Note the homogeneous boundary conditions,
which we would not have in the Black-Scholes
context. Non-homogeneous boundary condi-
tions are fairly easy to handle, but we exclude
them for convenience. The theorem we are
going to develop holds for non-homogeneous
conditions as well.

We won't give a formal definition of elliptic
problems, but these are time independent prob-
lems steady state boundary value which include
equations like —ugz, = f, in the case of one
Space variable.
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Energy Formulation: Define a (closed, con-
vex) set K consisting of test functions smooth
and satisfying v(xz) > g(x) on [0, 1], and satis-
fying the boundary conditions v(0) = 0 = v(1).
The problem is to find a u(x) € K that mini-
mizes the energy functional

E(v) = %/01 (v%—l—cvz—Qvf) dx

over all v € K. Such a function is an energy
solution.

Variational Form: Find a v € K such that the
elliptic variational inequality (EVI)

/Ol(ux(v—u)x—l—u(v—u))daz2/01f-(v—u)da:

holds for all v € K. Such a wu is called a varia-
tional inequality solution.

What are the connections between these forms
of the problem, if any?

11



Theorem 1. Let K be defined as above.
(a) Energy solutions are variational inequality solutions.
(b) Variational inequality solutions are energy solutions.

(c) Classical solutions are variational inequality solu-
tions.

(d) Variational inequality solutions are unique.

(e) Variational inequality solutions exist.

Remark. This theorem is very useful for a number of
reasons.

(1) It shows that if there is a classical solution there is
only one.

(2) The concepts of energy and variational inequality
solutions enlarge the scope of problems that we can
handle. Note that we no longer require that u(x) have
a second derivative. As a matter of fact, it doesn’t even
have to have a first derivative in the usual sense — rather
a “weak” derivative.

(3) The energy form is going to give us an easy way to
develop a numerical scheme for solving this problem.

12



(b) Parabolic Problems

What we are mainly interested in is the follow-
ing problem: Let D be the set of all points in
the xt-plane such that u(x,t) = g(x,t) and let
sets K (t) consisting of smooth test functions
satisfying v(x,t) > g(x,t) on [0, 1] x [0,T], and
satisfying the boundary conditions v(0,t) =
0=v(1,1).

Classical Formulation: Find a function u(z,t)
with smooth second partials that satisfies

ur —uge = f on [0,1] x [0, T]\D,
u = g on D,
ut —ugz > f on [0,1] x [0,T],
u > g on [0,1] x [0,T],
u(0,t) = O,
u(1l,t) = O,

u(x,0)

uO(az) € K(O)
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Variational Form: Find a function u(x,t) such
that u(-,t) € K(t) fort € [0,T] and u; is defined
and integrable in a certain sense such that the
parabolic variational inequality (PVI)

/olut(v—U)dx—l-/olfu:c(v—u)xda:Z/Olf(v—u)da;

holds for all v € K(t) and “almost all” ¢ and
Such a w is called a variational inequality solu-
tion.

What are the connections between these forms
of the problem, if any?

Theorem 2. Let K(t) be defined as above.

(a) Classical solutions are variational inequality solu-
tions.

(b) Variational inequality solutions are unique.

(c) Variational inequality solutions exist.

These theorems are rather more subtle. See
Ref. 2 for a careful presentation of this theo-
rem and other results.
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3: Numerical Solutions to Variational In-
equalities

(a) Elliptic Variational Inequalities

We are going to consider the possibility that
test functions take values other than zero. So
we redefine a (closed, convex) set K consist-
ing of test functions smooth and satisfying
v(z) > g(x) on [0, 1], and satisfying the bound-
ary conditions v(0) = ¢g(0) and v(1) = g¢(1).
The problem is to find a u(x) € K that mini-
mizes the energy functional

E(v) = %/01 (v%—l—cvz—Qvf) dx

over all v € K.

We are going to approximate this infinite di-
mensional problem by a finite dimensional one
that we can plug into a computer.

17



Notations:
N: number of unknown nodes.

1
h = ———: number of subintervals (step size).
N +1

xr; =7j-hi jth node, 5 =0,..., N+ 1.
k; = k(x;): for a given function k(x) € C[0, 1].

K. the set of all v(x) € C[0,1] such that
v; > g;j and v(x) is linear on the subintervals

[xj,:vj_|_1], j: 1,...,N.

N;(x): the piecewise linear function (hat func-
tions, chapeau functions, cardinal functions)
on subintervals [z, z;41] such that

1, ifjg=1
0 otherwise

Ni(z;) = {

18



X0 X 5(2 X3 xn— 1 *n Xn+ 17

Hat Functions on [0,1]: x & 0, x T 1.

Key Fact: Any continuous function k(x) that
is linear on subintervals [z;,z;441], 7 =0,..., N,
IS uniquely represented by the formula

N+1
k(z) = ) k(z;)N;(z).

7=0
The reason is easily seen: linear combinations
of continuous functions linear on the subinter-
vals have the same property. So the right hand
side is continuous and piecewise linear. More-
over, it agrees with k(x) at each of the nodes
zr;, 3 =0,...,N++ 1. Since linear functions are
uniquely determined by two values, the result

follows.
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If k(x) is not piecewise linear, the above for-
mula gives the so-called linear interpolant ap-
proximation k"(z) to k(z), that is,

N+1

Ki(z) = 3 k(z;)Nj(x).

7=0
About derivatives...

A technical detail about hat functions is the
matter of a derivative function. Obviously, one
doesn’'t exist at bends, so N(z) doesn’'t have
a derivative in the classical sense. We define
N]/-(a:) to be 1/h on theinterval (z;_1,z;], —1/h
on the interval (z;,z;41] and 0 otherwise. In
this way we recover the fundamental theorem
of calculus:

b
/ N/(z)dz = N(b) — N(a)
a
forany 0<a<b<1.
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We can now formulate the discrete model for
the Energy Formulation. Approximate the so-
lution v(x), right hand side f(x) and barrier
function g(x) by their linear interpolants. Ob-
serve that the first and last values of v(x), vg
and vy 41, are known, while the values vy, vp, ..., vy
are unknown.

Introduce notation for the known (in principle)
constants

aji = [ (Nj@INEG) + eNj(@)Ni(@)) d,

b, = /01 N () f () dz.

21



Next, calculate the energy functional
1 L/ 2 R\ 2 h ch
E(v™) 5 )y ((vx) —|—C(’U ) — 20" f )d:v
1 1 (N1 N4+1
= 5 A Z vjNé(x) Z v Ni(z) | dx

k=0

1 1 (N1 N+1
+§ o ° ( Z ’Uij(:c)> (Z ’Uka(iU)> dx

k=0

N—I—lN—I—l N+1

5 Z > UjakVE = D vjb;

] =0 k=0 7=0
This is just a quadratic function in the variables
v1,v2,...,vNy. AS we noted before, vg and vy
are not variables — they are known values v(0)
and v(1).
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For the moment, let's ignore the constraints
on the wv;'s. As in calculus, we would dif-
ferentiate the energy functional with respect
to vy,..., vy and set the results equal to zero
to locate the critical points. Use the symme-
try property a;. = ag; and a little calculation

shows that

N+1

Z AV —bm =0, m=1,2, ... N.

k=0
Now let the N x N matrix A have entries ajy,
the N x1 vector b have entries b1 —agivg, b2, ...,bn—
any N+1VN41 and the N x 1 vector v have en-
tries v1,vo,...,vn. Then the problem reduces

to the simple linear system

Av = b.

Now it can be proved that the matrix A is sym-
metric positive definite, hence non-singular. There-
fore, this system has a unique solution.

23



We could find the solution v by Gaussian elim-
ination, as in Math 314. However, there is
another approach that we want to explore be-
cause it can be extended to handle the con-
straints of this problem.

Gauss-Seidel-SOR Method:

The idea is to iteratively approximate a solu-
tion to Av = b, starting from some initial guess
v0 For example, we could use the first equation
to solve for v in terms of v3,...,%;, then use
the second equation to solve for v% in terms of

vivg, ..., 0%, etc. In equation form

v?—l_l — (bj - ajk’“k -2 ajk”k) /ajj> 3 =1,2,.
k<j k>3

where the iteration is repeated for n =20,1,...

until convergence. However, one can think of

the term above as a ‘“relaxation term” in the

sense that, with w =1,

;H_l—v —|—< nt1 ’U;?’)—U —I—w( n+1—vn).



This suggests that we could “overrelax” the
approximation by using larger w. Hence, the
SOR method:

~n+1
U?+ — (bj - ajkvk -2 ajk”k) /ajj

k<y k>

1 N 1 N 1
fu;?’"' — v;-”—l—w(v;’_l_ — )—(1—w)v + wv n+

Theorem 3. If A is a symmetric positive def-
inite matrix and 0 < w < 2, then the Gauss-
Seidel-SOR method converges from any start-
ing guess. Moreover, there is an optimal w =
w* (most rapid convergence rate), where 1 <
w* < 2.

Back to our problem, where we now pay at-
tention to the constraints on the v;'s. If we
take the point of view that the jth equation is
used to solve for v;, then we must have either
v; > g; or the jth equation holds.

25



One could use “linear complementarity” to ex-
press this condition. We simply observe that a
small adjustment in SOR enables us to respect
these constraints.

Theorem 4. Suppose that A is a symmetric
positive definite N x N matrix, 0 < w < 2 and
g and v© are N x 1 vectors and

K={v|visNx1landwvj>g;,j=1,...,N}.
Then the projected SOR method

~n—+1
11;-7’—'_ = (bj = a]kvk = aglﬂ%) /a;;

k<j k>j

v;fb_l'l — max{gj,(l—w)v?—l—w@?_l_l}

generates a sequence of vectors {v"} 24 that
converges to the solution to the problem of
minimizing
i T T
E(v) = {,2'[@ {V Av — v b}.
This pretty well completes the description of
our numerical algorithm. A few more mechan-
ical details are needed.
26



About integrals...

These formulas are easily checked directly:

(

0, 7 — k|l >1
—1/h, k=j+1
2/h, O<k=j<N+1
| 1/h, k=j=0o0or N+1

1
/o Nj'(a:)N,;(a:)dx =

(

0, 7 — k| >1
h/6, k=j5+1
2h/3, O<k=j<N+1
L h/3, k=j=0o0or N+1

1
/ N;(x) Ng(x)dr = <
0

1 b(2fo+ f1), j=0
Jo Nj(@) fM(z)dz = & (fi-1 +4f; + fi+1), O0<j<N+1
b v+ 2fn41) j=N+1
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(b) Numerical ODEs

Well, not really. Actually, the question we have
to deal with is simpler, but the connection to
ODEs is that one uses the Taylor series kinds
of argument we're about to see in an essential
way in analyzing the merit of various numerical
ODE methods.

Question: How do we approximate a func-
tion dy/dt given values of y(t) at various node
points?

For purpose of simplicity, Iet's say that we have
equally spaced nodes in steps of k. Let t; =17
and y; = y(jk). Recall the Taylor formulas

2
y(tj41) = u(t) + 9/ (k+" (1) + OG)

2
y(tj-1) = (1) — o (t)k + 3" (1) " + O)

28



Use the first to solve for yé = y/(t;) and obtain
the forward difference formula
Yi+1 — Yy
vj = ‘7+k T+ O(k).
Similarly, the second formula gives the back-

ward difference formula
Yi ~Yi-1 o (g
I 4 Ok,

Next, we subtract the second Taylor formula
from the first and solve for y; to obtain

/I
Y; —

;Y41 — Y1 2
y; = % + O(k7).
This is the so-called centered difference for-
mula. These order formulas suggest that as
k gets smaller, the centered difference formula
should exceed the others in accuracy. If we add
these two Taylor formulas together, we also
get something rather interesting fact about av-

erages:

_Yj—1 T Y41

Yj 5 + O(k?).
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One more point along these lines: wouldn't
it be nice if somehow the simple forward dif-
ferences, which have the merit of only using
values at two adjacent nodes, were second or-
der accurate? Well, if you squint, they are!
Suppose that we had written out the Taylor
formulas above for half steps k£/2. What we
would have ended up with is

2
 Yi+1 Yy k  Yi4+1 Yy 5
Vi1 =2 0((Z) ) = U N 0(k?)

where we understand that y; 1 1 /5 = y(tj41/0) =
y((j+1/2)k). This is a so-called value of y at a
“half-node”. If we also wanted a second order
accurate value for y itself at this half-node,
then we would use the averaging formula to
obtain that

Yit1 T+ Yj
Yjt12 =5+ O(k?),
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(c) Parabolic Variational Inequalities

We're now going to combine parts (a) and (b)
to tackle the parabolic variational inequality.
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4: Numerical Experiments
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