Analysis of syndrome-based iterative decoder failure of QLDPC codes

Kirsten D. Morris, Tefjol Pllaha, Christine A. Kelley

Department of Mathematics University of Nebraska - Lincoln

Graph Representation

A linear code C with parity check matrix H may be represented by a bipartite Tanner graph¹ G = (V, W; E).

- V ("variable nodes"), representing codeword coordinates
- W ("check nodes"), representing check equations.
- $(v_i, w_j) \in E$ iff $h_{j,i} = 1$.

¹Tanner, "A recursive approach to low complexity codes," 1981

Tanner Graph

$$\mathbf{x} \in \mathcal{C}$$
 if and only if $H\mathbf{x}^{T} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \mathbf{0}$

 $w_1: x_1 + x_2 = 0$

 $w_2: x_1 + x_3 + x_4 = 0$

 $w_3: x_2 + x_4 = 0$

A Low Density Parity-Check (LDPC) Code is a linear code with sparse parity-check matrix.

- Low complexity iterative decoding.
- There exists asymptotically good codes.

\mathbb{C}^2	\leftrightarrow	\mathbb{F}_2^2
$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	\leftrightarrow	(0,0)
$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	\leftrightarrow	(1,0)
$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	\leftrightarrow	(0,1)
Y = iXZ	\leftrightarrow	(1, 0)
$e = i^c X^a Z^b$	\leftrightarrow	(a, b)

• Two errors $e \equiv (e_X, e_Z), f \equiv (f_X, f_Z)$ commute if and only if $e \odot f \equiv e_X f_Z^T + e_Z f_X^T = 0$

- Two errors e ≡ (e_X, e_Z), f ≡ (f_X, f_Z) commute if and only if
 e ⊙ f ≡ e_Xf_Z^T + e_Zf_X^T = 0
- An [[n, n k]] stabilizer code is defined by a k × 2n matrix H = (H_X | H_Z) such that

$$H \odot H := H_X H_Z^T + H_Z H_X^T = 0.$$

- Two errors $e \equiv (e_X, e_Z), f \equiv (f_X, f_Z)$ commute if and only if $e \odot f \equiv e_X f_Z^T + e_Z f_X^T = 0$
- An [[n, n k]] stabilizer code is defined by a k × 2n matrix H = (H_X | H_Z) such that

$$H \odot H := H_X H_Z^T + H_Z H_X^T = 0.$$

• Recall:

$$\begin{array}{c|c} (\mathbb{C}^2)^{\otimes n} \cong \mathbb{C}^{2^n} & e_1 \otimes \cdots \otimes e_n = i^{c_1} X^{a_1} Z^{b_1} \otimes \cdots \otimes i^{c_n} X^{a_n} Z^{b_n} \\ & \uparrow & & \uparrow \\ \mathbb{F}_2^{2^n} & (e_X, e_Z) \equiv (a_1, \dots, a_n, b_1, \dots, b_n) \end{array}$$

- Two errors e ≡ (e_X, e_Z), f ≡ (f_X, f_Z) commute if and only if
 e ⊙ f ≡ e_Xf_Z^T + e_Zf_X^T = 0
- An [[n, n k]] stabilizer code is defined by a k × 2n matrix H = (H_X | H_Z) such that

$$H \odot H := H_X H_Z^T + H_Z H_X^T = 0.$$

• Recall:

$$\begin{array}{c|c} (\mathbb{C}^2)^{\otimes n} \cong \mathbb{C}^{2^n} & e_1 \otimes \cdots \otimes e_n = i^{c_1} X^{a_1} Z^{b_1} \otimes \cdots \otimes i^{c_n} X^{a_n} Z^{b_n} \\ & \uparrow & & \uparrow \\ \mathbb{F}_2^{2^n} & (e_X, e_Z) \equiv (a_1, \dots, a_n, b_1, \dots, b_n) \end{array}$$

• The of the codewords of the [[n, n - k]] stabilizer code are eigenvectors of

A CSS Code is defined by a pair of classical linear codes $C_X, C_Z \subset \mathbb{F}_q^n$ such that $C_X^{\perp} \subseteq C_Z$.

Two respective parity check matrices H_X and H_Z satisfy $H_Z H_X^T = 0$ and thus the matrix

$$H = \left(\begin{array}{c|c} H_{\mathsf{X}} & 0\\ 0 & H_{\mathsf{Z}} \end{array}\right)$$

satisfies

$$\begin{pmatrix} H_{\mathsf{X}} \\ 0 \end{pmatrix} \begin{pmatrix} 0 & H_{\mathsf{Z}}^{\mathsf{T}} \end{pmatrix} + \begin{pmatrix} 0 \\ H_{\mathsf{Z}} \end{pmatrix} \begin{pmatrix} H_{\mathsf{X}}^{\mathsf{T}} & 0 \end{pmatrix} = \begin{pmatrix} 0 & H_{\mathsf{X}} H_{\mathsf{Z}}^{\mathsf{T}} \\ H_{\mathsf{Z}} H_{\mathsf{X}}^{\mathsf{T}} & 0 \end{pmatrix} = 0$$

- Why quantum LDPC Codes:
 - 2003 (Kitaev): surface code
 - 2013 (Gottesman): quantum LDPC codes achieve fault tolerance with constant overhead
- Good quantum LDPC Codes:
 - 2009 (Tillich & Zémor): $r = c > 0, d \sim \sqrt{n}$
 - 2020-2021: A series of works that broke the \sqrt{n} barrier
 - Nov. 2021: (Panteleev & Kalachev): Asymptotically good codes exist

For a CSS code, the syndrome of an error (e_X, e_Z) is computed as

$$\begin{pmatrix} H_{\mathsf{X}} & 0\\ 0 & H_{\mathsf{Z}} \end{pmatrix} \odot (e_{\mathsf{X}}, e_{\mathsf{Z}}) = (H_{\mathsf{Z}} e_{\mathsf{X}}^{\mathsf{T}}, H_{\mathsf{X}} e_{\mathsf{Z}}^{\mathsf{T}})$$
$$\equiv (\sigma_{\mathsf{X}}, \sigma_{\mathsf{Z}})$$

Thus, C_Z is used to decode X-errors and C_X is used to correct Z errors.

Goal of a syndrome-based decoder: estimate the error pattern \hat{e} whose syndrome $\hat{\sigma}$ matches with the initial input syndrome σ .

Input to the decoder: Measured syndrome σ **Process**:

- Messages are passed along edges of Tanner graph.
- Nodes wait until they receive messages from all but one neighbor.
- Compute new message to send to remaining neighbor.

Input to the decoder: Measured syndrome σ **Process**:

- Messages are passed along edges of Tanner graph.
- Nodes wait until they receive messages from all but one neighbor.
- Compute new message to send to remaining neighbor.

Goal: Estimate the error pattern \hat{e} whose syndrome $\hat{\sigma}$ matches with the initial input syndrome σ .

Gallager-B Syndrome-based Iterative Decoder

- 0. Variable nodes are initialized at 0, check nodes are initialized with the input syndrome.
- 1. The outgoing check node message over an edge is computed as the XOR of extrinsic variable node messages and syndrome input value.
 - Estimated error \hat{e} is determined to be the majority among all incoming check node values at each variable node.
- 2. The outgoing variable node message is the majority value among incoming extrinsic check node messages.
 - The estimated syndrome is computed as the XOR of all incoming variable node messages.
- 3. Decoder halts if $\hat{\sigma} = \sigma$ or if ℓ is larger than a threshold.

²Raveendran and Vasić, "Trapping Sets of Quantum LDPC Codes," 2021

²Raveendran and Vasić, "Trapping Sets of Quantum LDPC Codes," 2021

²Raveendran and Vasić, "Trapping Sets of Quantum LDPC Codes," 2021

²Raveendran and Vasić, "Trapping Sets of Quantum LDPC Codes," 2021

²Raveendran and Vasić, "Trapping Sets of Quantum LDPC Codes," 2021

²Raveendran and Vasić, "Trapping Sets of Quantum LDPC Codes," 2021

²Raveendran and Vasić, "Trapping Sets of Quantum LDPC Codes," 2021

²Raveendran and Vasić, "Trapping Sets of Quantum LDPC Codes," 2021

²Raveendran and Vasić, "Trapping Sets of Quantum LDPC Codes," 2021

Trapping Sets

- A check node w_j, for 1 ≤ j ≤ k, is eventually correct if there exists L ∈ Z_{≥0} such that ô_j^(ℓ) = σ_j for all ℓ ≥ L.
- A variable node v_i, for 1 ≤ i ≤ n, is said to eventually converge if there exists L ∈ Z_{≥0} such that ê^(ℓ)_i = ê^(ℓ-1)_i for all ℓ ≥ L.
- A trapping set for a syndrome-based iterative decoder is a non-empty set of variable nodes *T* in a Tanner graph *G* such that there is a subset of variable nodes *F* ⊆ *T* that when initially in error result in some subset of check nodes of *N*(*T*) not eventually correct or some variable nodes of *T* not eventually converging.
- The graph $\mathcal{T} \cup \mathcal{N}(\mathcal{T})$ is the trapping set graph with respect to \mathcal{T} .
- A subset of variable nodes *F* that when initially in error result in a trapping set *T* is called a failure-inducing set for *T*.

Related Structures

Nodes in Error	Input Syndrome	Estimated Syndrome	Estimated Error
$\{v_1, v_2, v_3, v_4\}$	(0, 0, 0, 0, 1, 1, 0, 1, 1)	(0, 0, 0, 0, 0, 0, 1, 0, 0)	{ <i>v</i> ₅ }
$\{v_1, v_2, v_3, v_5\}$	(0, 0, 1, 1, 0, 0, 1, 1, 0)	(0, 0, 0, 0, 0, 0, 0, 0, 1)	{ <i>v</i> ₄ }
$\{v_1, v_3, v_4, v_5\}$	(1, 1, 0, 0, 0, 0, 1, 0, 1)	(0, 0, 0, 0, 0, 0, 0, 0, 1, 0)	{ <i>v</i> ₂ }
$\{v_1, v_2, v_4, v_5\}$	(0,1,1,0,0,1,1,1,1)	(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	$\{v_2, v_3, v_4, v_5\}$
		(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	{}
		(1, 1, 1, 1, 1, 1, 0, 0, 0)	$\{v_2, v_3, v_4, v_5\}$
		(1, 1, 1, 1, 1, 1, 0, 0, 0)	$\{v_1, v_3\}$
$\{v_2, v_3, v_4, v_5\}$	(1,0,0,1,1,0,1,1,1)	(1, 1, 1, 1, 1, 1, 0, 0, 0)	$\{v_1, v_3\}$
		(1, 0, 0, 1, 1, 0, 1, 1, 1)	$\{v_1, v_2, v_4, v_5\}$
		(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)	{}
		(0, 0, 0, 0, 0, 0, 0, 0, 0)	$\{v_1, v_2, v_4, v_5\}$

An (a, b) absorbing set \mathcal{A} in a Tanner graph G is a subset of $|\mathcal{A}| = a$ variable nodes such that in the graph $G_{\mathcal{A}}$ induced by $\mathcal{A} \cup \mathcal{N}(\mathcal{A})$ there are b odd degree check nodes and every $v \in \mathcal{A}$ has more even degree than odd degree neighbors in $G_{\mathcal{A}}$.

An (a, b) absorbing set \mathcal{A} in a Tanner graph G is a subset of $|\mathcal{A}| = a$ variable nodes such that in the graph $G_{\mathcal{A}}$ induced by $\mathcal{A} \cup \mathcal{N}(\mathcal{A})$ there are b odd degree check nodes and every $v \in \mathcal{A}$ has more even degree than odd degree neighbors in $G_{\mathcal{A}}$.

An (a, b) absorbing set \mathcal{A} in a Tanner graph G is a subset of $|\mathcal{A}| = a$ variable nodes such that in the graph $G_{\mathcal{A}}$ induced by $\mathcal{A} \cup \mathcal{N}(\mathcal{A})$ there are b odd degree check nodes and every $v \in \mathcal{A}$ has more even degree than odd degree neighbors in $G_{\mathcal{A}}$.

Question: What relationship is there, if any, between absorbing sets, trapping sets, and failure-inducing sets?

Theorem

Let \mathcal{A} be an (a, b)-absorbing set with $b \ge 1$. Then \mathcal{A} itself is a failure-inducing set and therefore \mathcal{A} is a trapping set.

Proof

- At least one $\sigma_i = 1$.
- The next estimated syndrome $\hat{\sigma} = \overrightarrow{0}$ because
 - Each variable node has strictly more even degree than odd degree check nodes.
 - Even degree nodes send zeros, odd degrees nodes send ones.
 - Majority rules and the estimated error is $\hat{e} = \vec{0}$.
 - Outgoing variable messages are always 0 because the extrinsic check nodes are at most evenly tied.

Theorem

An (a,0) absorbing set ${\mathcal A}$ a trapping set if and only if $\overrightarrow{1}$ is not a stabilizer.

Theorem

An (a,0) absorbing set \mathcal{A} a trapping set if and only if $\overrightarrow{1}$ is not a stabilizer.

Proof

- Input syndrome $\sigma = \vec{0}$ because all CNs have even degree and all VNs are sending 1s.
- syndrome is matched in the first iteration and estimated error is $\hat{e} = \overrightarrow{0}$.
- $e + \hat{e} = \overrightarrow{1}$.

Theorem

An (a,0) absorbing set \mathcal{A} a trapping set if and only if $\overrightarrow{1}$ is not a stabilizer.

Proof

- Input syndrome $\sigma = \vec{0}$ because all CNs have even degree and all VNs are sending 1s.
- syndrome is matched in the first iteration and estimated error is $\hat{e} = \overrightarrow{0}$.
- $e + \hat{e} = \overrightarrow{1}$.

Takeaway

Variable nodes indexed by nonstabilizers with input syndrome $\vec{0}$ form failure-inducing sets of an (a, 0) absorbing set.

Related (*a*,0) absorbing sets: Symmetric Stabilizers³

³Raveendran and Vasić, "Trapping Sets of Quantum LDPC Codes," 2021

• Classify all failure-inducing sets within an absorbing set.

- Classify all failure-inducing sets within an absorbing set.
- What about other decoders?

- Classify all failure-inducing sets within an absorbing set.
- What about other decoders?
- How to fix absorbing sets?

- Classify all failure-inducing sets within an absorbing set.
- What about other decoders?
- How to fix absorbing sets?
- What about beyond absorbing sets?

Thank You!