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Graph Representation

A linear code C with parity check matrix H may be represented by

a bipartite Tanner graph1 G = (V ,W ;E).

• V (“variable nodes”), representing codeword coordinates

• W (“check nodes”), representing check equations.

• (vi ,wj) ∈ E iff hj ,i = 1.
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Tanner Graph
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LDPC Codes

A Low Density Parity-Check (LDPC) Code is a linear code with

sparse parity-check matrix.

• Low complexity iterative decoding.

• There exists asymptotically good codes.
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Stabilizer Codes

C2 ↔ F2
2
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Y = iXZ ↔ (1,0)

e = icXaZb ↔ (a,b)

(C2)⊗n ≅ C2n e1 ⊗⋯⊗ en = i
c1Xa1Zb1 ⊗⋯⊗ icnXanZbn

↕ ↕

F2n
2 (eX, eZ) ≡ (a1, . . . , an,b1, . . . ,bn)
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Stabilizer Codes

• Two errors e ≡ (eX, eZ), f ≡ (fX, fZ) commmute if and only if

e ⊙ f ≡ eXf
T
Z + eZf

T
X = 0

• An [[n,n − k]] stabilizer code is defined by a k × 2n matrix

H = (HX ∣ HZ) such that

H ⊙H ∶= HXH
T
Z +HZH

T
X = 0.

• Recall:

(C2)⊗n ≅ C2n e1 ⊗⋯⊗ en = i
c1Xa1Zb1 ⊗⋯⊗ icnXanZbn

↕ ↕

F2n
2 (eX, eZ) ≡ (a1, . . . , an,b1, . . . ,bn)

• The of the codewords of the [[n,n − k]] stabilizer code are

eigenvectors of

e1 ⊗⋯⊗ en = i
c1Xa1Zb1 ⊗⋯⊗ icnXanZbn
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Calderbank-Shor-Steane (CSS) Codes

A CSS Code is defined by a pair of classical linear codes

CX,CZ ⊂ Fn
q such that C⊥X ⊆ CZ.

Two respective parity check matrices HX and HZ satisfy HZH
T
X = 0

and thus the matrix

H =
⎛

⎝

HX 0
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⎞

⎠
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⎠
(0 HT

Z ) +
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⎝

0
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⎞

⎠
(HT

X 0) =
⎛

⎝

0 HXH
T
Z

HZH
T
X 0

⎞

⎠
= 0
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Quantum LDPC Codes: Highlights

• Why quantum LDPC Codes:

• 2003 (Kitaev): surface code

• 2013 (Gottesman): quantum LDPC codes achieve fault

tolerance with constant overhead

• Good quantum LDPC Codes:

• 2009 (Tillich & Zémor): r = c > 0,d ∼
√
n

• 2020-2021: A series of works that broke the
√
n barrier

• Nov. 2021: (Panteleev & Kalachev): Asymptotically good

codes exist
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Syndrome Decoding for CSS Codes

For a CSS code, the syndrome of an error (eX, eZ) is computed as

⎛

⎝

HX 0

0 HZ

⎞

⎠
⊙ (eX, eZ) = (HZe

T
X ,HXe

T
Z )

≡ (σX, σZ)

Thus, CZ is used to decode X-errors and CX is used to correct Z

errors.

Goal of a syndrome-based decoder: estimate the error pattern ê

whose syndrome σ̂ matches with the initial input syndrome σ.
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Syndrome-based Iterative Decoder

Input to the decoder: Measured syndrome σ

Process:

• Messages are passed along edges of Tanner graph.

• Nodes wait until they receive messages from all but one

neighbor.

• Compute new message to send to remaining neighbor.

Goal: Estimate the error pattern ê whose syndrome σ̂ matches

with the initial input syndrome σ.
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Gallager-B Syndrome-based Iterative Decoder

0. Variable nodes are initialized at 0, check nodes are initialized

with the input syndrome.

1. The outgoing check node message over an edge is computed
as the XOR of extrinsic variable node messages and syndrome
input value.

• Estimated error ê is determined to be the majority among all

incoming check node values at each variable node.

2. The outgoing variable node message is the majority value
among incoming extrinsic check node messages.

• The estimated syndrome is computed as the XOR of all

incoming variable node messages.

3. Decoder halts if σ̂ = σ or if ℓ is larger than a threshold.
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2Raveendran and Vasić, “Trapping Sets of Quantum LDPC Codes,” 2021

12



Example2

v1 v2

v3v4

v5

c1

c2

c3

c4

c5

c6

c7

c8

c9

σ = (1,1,1,1,1,1,1,1,1)
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2Raveendran and Vasić, “Trapping Sets of Quantum LDPC Codes,” 2021

12



Example2

v1 v2

v3v4

v5

c1

c2

c3

c4

c5

c6

c7

c8

c9

σ̂(1) = (0,0,0,0,0,0,0,0,0)

Ð→

v1 v2

v3v4

v5

c1

c2

c3

c4

c5

c6

c7

c8

c9
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Trapping Sets

• A check node wj , for 1 ≤ j ≤ k , is eventually correct if there

exists L ∈ Z≥0 such that σ̂j
(ℓ) = σj for all ℓ ≥ L.

• A variable node vi , for 1 ≤ i ≤ n, is said to eventually converge

if there exists L ∈ Z≥0 such that ê
(ℓ)
i = ê

(ℓ−1)
i for all ℓ ≥ L.

• A trapping set for a syndrome-based iterative decoder is a

non-empty set of variable nodes T in a Tanner graph G such

that there is a subset of variable nodes F ⊆ T that when

initially in error result in some subset of check nodes of N (T )

not eventually correct or some variable nodes of T not

eventually converging.

• The graph T ∪N (T ) is the trapping set graph with respect

to T .

• A subset of variable nodes F that when initially in error result

in a trapping set T is called a failure-inducing set for T .
13



Related Structures

Nodes in Error Input Syndrome Estimated Syndrome Estimated Error

{v1, v2, v3, v4} (0,0,0,0,1,1,0,1,1) (0,0,0,0,0,0,1,0,0) {v5}

{v1, v2, v3, v5} (0,0,1,1,0,0,1,1,0) (0,0,0,0,0,0,0,0,1) {v4}

{v1, v3, v4, v5} (1,1,0,0,0,0,1,0,1) (0,0,0,0,0,0,0,1,0) {v2}

{v1, v2, v4, v5} (0,1,1,0,0,1,1,1,1)

(0,0,0,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0,0)

(1,1,1,1,1,1,0,0,0)

(1,1,1,1,1,1,0,0,0)

{v2, v3, v4, v5}

{}

{v2, v3, v4, v5}

{v1, v3}

{v2, v3, v4, v5} (1,0,0,1,1,0,1,1,1)

(1,1,1,1,1,1,0,0,0)

(1,0,0,1,1,0,1,1,1)

(0,0,0,0,0,0,0,0,0)

(0,0,0,0,0,0,0,0,0)

{v1, v3}

{v1, v2, v4, v5}

{}

{v1, v2, v4, v5}

v1 v2

v3v4

v5

c1
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Related Structures: Absorbing Sets

An (a,b) absorbing set A in a Tanner graph G is a subset of

∣A∣ = a variable nodes such that in the graph GA induced by

A∪N (A) there are b odd degree check nodes and every v ∈ A has

more even degree than odd degree neighbors in GA.

v1 v2

v3v4

v5

c1

c2

c3

c4

c5

c6

c7

c8

c9

(5,3) absorbing set (4,4) absorbing set non absorbing set

Question: What relationship is there, if any, between absorbing

sets, trapping sets, and failure-inducing sets?
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Related Structures: Absorbing Sets

Theorem

Let A be an (a,b)-absorbing set with b ≥ 1. Then A itself is a

failure-inducing set and therefore A is a trapping set.

Proof

• At least one σi = 1.

• The next estimated syndrome σ̂ =
Ð→
0 because

• Each variable node has strictly more even degree than odd

degree check nodes.

• Even degree nodes send zeros, odd degrees nodes send ones.

• Majority rules and the estimated error is ê =
Ð→
0 .

• Outgoing variable messages are always 0 because the extrinsic

check nodes are at most evenly tied.
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Related Structures: Absorbing Sets

Theorem

An (a,0) absorbing set A a trapping set if and only if
Ð→
1 is not a

stabilizer.

Proof

• Input syndrome σ =
Ð→
0 because all CNs have even degree and

all VNs are sending 1s.

• syndrome is matched in the first iteration and estimated error

is ê =
Ð→
0 .

• e + ê =
Ð→
1 .

Takeaway

Variable nodes indexed by nonstabilizers with input syndrome
Ð→
0

form failure-inducing sets of an (a,0) absorbing set.
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Related (a,0) absorbing sets: Symmetric Stabilizers3

(10,0) absorbing set Symmetric Split

3Raveendran and Vasić, “Trapping Sets of Quantum LDPC Codes,” 2021
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Wish list

• Classify all failure-inducing sets within an absorbing set.

• What about other decoders?

• How to fix absorbing sets?

• What about beyond absorbing sets?
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Thank You!


