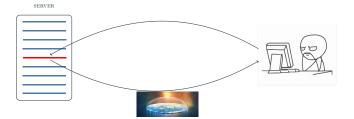
Quantum Private Information Retrieval

Private Information Retrieval with Quantum Resources

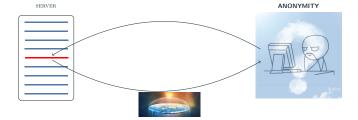
Tefjol Pllaha

Department of Mathematics University of Nebraska - Lincoln

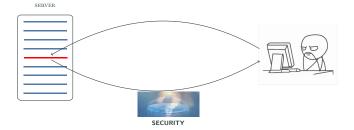
Typical Online Activity



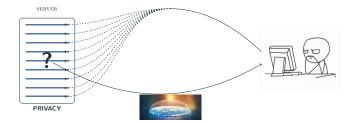
Typical Online Activity: Anonymity



Typical Online Activity: Security



Typical Online Activity: Privacy



- Chor et al. 1995: Seminal paper on PIR.
 - Privacy only achievable by downloading the entire database.
 - PIR schemes for replicated databases.
 - Impractical due to storage overhead.

- Chor et al. 1995: Seminal paper on PIR.
 - Privacy only achievable by downloading the entire database.
 - PIR schemes for replicated databases.
 - Impractical due to storage overhead.
- Renewed interest from coded storages.
 - Collusion, capacity, lower overhead...

- Chor et al. 1995: Seminal paper on PIR.
 - Privacy only achievable by downloading the entire database.
 - PIR schemes for replicated databases.
 - Impractical due to storage overhead.
- Renewed interest from coded storages.
 - Collusion, capacity, lower overhead...
- Increased demand/awareness for privacy.
 - Anonymization, differential privacy, data protection laws ...

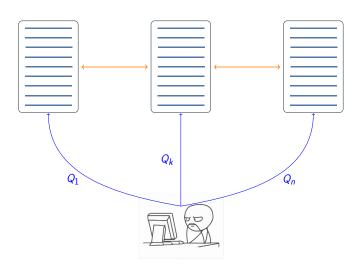
- Chor et al. 1995: Seminal paper on PIR.
 - Privacy only achievable by downloading the entire database.
 - PIR schemes for replicated databases.
 - Impractical due to storage overhead.
- Renewed interest from coded storages.
 - Collusion, capacity, lower overhead...
- Increased demand/awareness for privacy.
 - Anonymization, differential privacy, data protection laws ...
- Quest for practical solutions continues.

Coded Storage

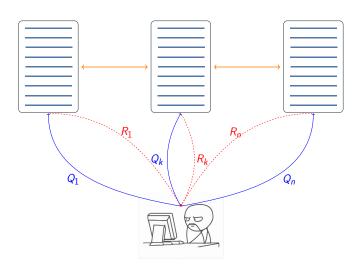
m files $x^1, \ldots, x^m \in \mathbb{F}_q^{\beta \times k}$ are encoded and stored on n servers by a [n, k] storage code \mathcal{C} .

$$\text{file 1} \left(\begin{array}{c} x_{1,1}^1 & \cdots & x_{1,k}^1 \\ \vdots & \ddots & \vdots \\ x_{\beta,1}^1 & \cdots & x_{\beta,k}^1 \\ \vdots & \vdots & \vdots \\ x_{1,1}^m & \cdots & x_{1,k}^m \\ \vdots & \ddots & \vdots \\ x_{\beta,1}^m & \cdots & x_{\beta,k}^m \end{array} \right) \quad \cdot \mathbf{G}_{\mathcal{C}} = \left(\begin{array}{c} y_{1,1}^1 & \cdots & y_{1,n}^1 \\ \vdots & \ddots & \vdots \\ y_{\beta,1}^1 & \cdots & y_{\beta,n}^1 \\ \vdots & \vdots & \vdots \\ y_{m}^m & \cdots & y_{m}^m \\ \vdots & \ddots & \vdots \\ y_{\beta,1}^m & \cdots & y_{\beta,n}^m \end{array} \right)$$

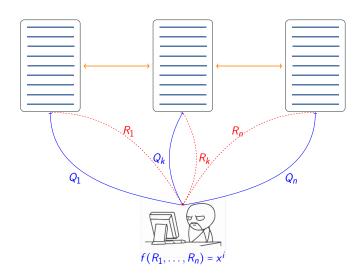
Private Information Retrieval (PIR)



Private Information Retrieval (PIR)



Private Information Retrieval (PIR)



Definition (t-PIR).

User privacy: Any set of at most t colluding nodes learns no information about the index i of the desired file, i.e., the mutual information

$$I(i; Q_{\mathcal{T}}^K, R_{\mathcal{T}}^K, y_{\mathcal{T}}) = 0, \quad \forall \ \mathcal{T} \subset [n], |\mathcal{T}| \leq t \ .$$

Server privacy: The user does not learn any information about the files other than the requested one, *i.e.*,

$$I(x^j; Q^K, R^K, K) = 0, \quad \forall j \neq K.$$

A scheme with both user and server privacy is called symmetric.

Definition (Rate and Capacity).

For a PIR scheme the **rate** is the number of information bits of the requested file retrieved per downloaded bits, *i.e.*,

$$R_{\text{PIR}} = \frac{\text{Number of bits in a file}}{\text{Number of downloaded bits}}$$
.

The PIR capacity is the supremum of PIR rates of all possible PIR schemes, for a fixed parameter setting.

Definition (Rate and Capacity).

For a PIR scheme the rate is the number of information bits of the requested file retrieved per downloaded bits, *i.e.*,

$$R_{\text{PIR}} = \frac{\text{Number of bits in a file}}{\text{Number of downloaded bits}}$$
.

The PIR capacity is the supremum of PIR rates of all possible PIR schemes, for a fixed parameter setting.

Convention

QPIR is PIR with "entangled servers" and "quantum answers".

Definition (Rate and Capacity).

For a PIR scheme the rate is the number of information bits of the requested file retrieved per downloaded bits, *i.e.*,

$$R_{\text{PIR}} = \frac{\text{Number of bits in a file}}{\text{Number of downloaded bits}}$$
.

The PIR capacity is the supremum of PIR rates of all possible PIR schemes, for a fixed parameter setting.

Convention

QPIR is PIR with "entangled servers" and "quantum answers".

Motivated by the work of Seunghoan Song and Masahito Hayashi

- arXiv:2001.04436, arXiv:1903.12556, arXiv:1903.10209
- Replicated storage with t = n 1 collusion.

Definition (Rate and Capacity).

For a PIR scheme the rate is the number of information bits of the requested file retrieved per downloaded bits, *i.e.*,

$$R_{PIR} = \frac{\text{Number of bits in a file}}{\text{Number of downloaded bits}}$$
.

The PIR capacity is the supremum of PIR rates of all possible PIR schemes, for a fixed parameter setting.

Convention

QPIR is PIR with "entangled servers" and "quantum answers".

Motivated by the work of Seunghoan Song and Masahito Hayashi

- arXiv:2001.04436, arXiv:1903.12556, arXiv:1903.10209
- Replicated storage with t = n 1 collusion.
- Goal: [n, k] coded storage with t = n k collusion.

Ingredients for QPIR

- Quantum adaptation of existing schemes.
- Generalized Reed-Solomon codes

$$\mathsf{GRS}_k(\alpha, v) = \{(v_i f(\alpha_i))_{1 \le i \le n} \mid f(x) \in \mathbb{F}_q^{< k}[x]\}.$$

Quantum Computation.

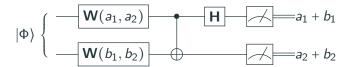
• Bell State $|\Phi\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$.

- Bell State $|\Phi\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$.
- Weyl Operator $W(a, b) = X^a Z^b$.

- Bell State $|\Phi\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$.
- Weyl Operator $\mathbf{W}(a,b) = \mathbf{X}^a \mathbf{Z}^b$.
- The PVM

$$\mathcal{B}_{\mathbb{F}_2^2} = \{ \mathbf{B}_{(a,b)} = \mathbf{W}_1(a,b) | \Phi \rangle \langle \Phi | \mathbf{W}_1(a,b)^{\mathrm{t}} \mid a,b \in \mathbb{F}_2 \}.$$

- Bell State $|\Phi\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$.
- Weyl Operator $\mathbf{W}(a,b) = \mathbf{X}^a \mathbf{Z}^b$.
- The PVM $\mathcal{B}_{\mathbb{F}_2^2} = \{ \mathbf{B}_{(a,b)} = \mathbf{W}_1(a,b) | \Phi \rangle \langle \Phi | \mathbf{W}_1(a,b)^{\mathrm{t}} \mid a,b \in \mathbb{F}_2 \}.$
- Two-Sum Protocol: Alice and Bob send the sum $(a_1 + b_1, a_2 + b_2)$ of their bits to Carol.



A QPIR Example

• n = 4 servers and $[4,2]_4$ - coded database with RS code

$$\mathbf{G}_{\mathcal{C}} = \begin{pmatrix} 1 & 0 & \alpha^2 & \alpha \\ 0 & 1 & \alpha & \alpha^2 \end{pmatrix}.$$

A QPIR Example

• n = 4 servers and $[4,2]_4$ - coded database with RS code

$$\mathbf{G}_{\mathcal{C}} = \begin{pmatrix} 1 & 0 & \alpha^2 & \alpha \\ 0 & 1 & \alpha & \alpha^2 \end{pmatrix}.$$

- Files: m files in $x^i \in \mathbb{F}_A^{\beta \times k}$
 - $\beta = 1$ and k = 2 (determined by encoding).
 - $x^i = (x_1^i, x_2^i).$
 - *k* also determines the number of rounds.

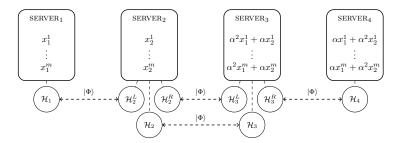
A QPIR Example

• n = 4 servers and $[4,2]_4$ - coded database with RS code

$$\mathbf{G}_{\mathcal{C}} = \begin{pmatrix} 1 & 0 & \alpha^2 & \alpha \\ 0 & 1 & \alpha & \alpha^2 \end{pmatrix}.$$

- Files: m files in $x^i \in \mathbb{F}_A^{\beta \times k}$
 - $\beta = 1$ and k = 2 (determined by encoding).
 - $x^i = (x_1^i, x_2^i).$
 - k also determines the number of rounds.
- Query index K, i.e., the requested file is $x^K = (x_1^K, x_2^K)$.

A QPIR Example: Entangled Servers



A QPIR Example: Queries

• Generate two independent and uniformly random vectors $Z_1, Z_2 \in \mathbb{F}_4^m$.

A QPIR Example: Queries

- Generate two independent and uniformly random vectors $Z_1, Z_2 \in \mathbb{F}_4^m$.
- Encode Z_1, Z_2 as codewords of the dual code:

$$\begin{split} (Q_1,\,Q_2,\,Q_3,\,Q_4) &= (Z_1,\,Z_2) \cdot \mathbf{G}_{\mathcal{C}^\perp} + \xi_{K,1} \\ &= \left[Z_1,\,Z_2,\,\alpha^2 \,Z_1 + \alpha \,Z_2,\,\alpha \,Z_1 + \alpha^2 \,Z_2^2 \right] + \xi_{K,1}. \end{split}$$

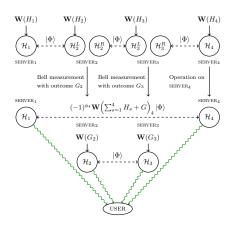
A QPIR Example: Queries

- Generate two independent and uniformly random vectors $Z_1, Z_2 \in \mathbb{F}_4^m$.
- Encode Z_1, Z_2 as codewords of the dual code:

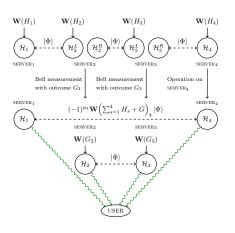
$$(Q_1, Q_2, Q_3, Q_4) = (Z_1, Z_2) \cdot \mathbf{G}_{C^{\perp}} + \xi_{K,1}$$

= $[Z_1, Z_2, \alpha^2 Z_1 + \alpha Z_2, \alpha Z_1 + \alpha^2 Z_2^2] + \xi_{K,1}.$

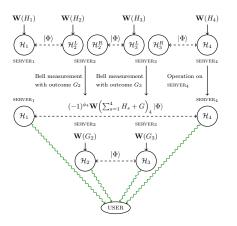
• Query Q_s to server s.



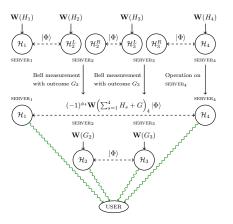
• Each server computes $H_s = \langle Q_s | y_s \rangle \in \mathbb{F}_4 = \mathbb{F}_2^2$.



- Each server computes $H_s = \langle Q_s | y_s \rangle \in \mathbb{F}_4 = \mathbb{F}_2^2$.
- Servers 1,4: $\mathbf{W}(H_1)$, $\mathbf{W}(H_4)$ to \mathcal{H}_1 , \mathcal{H}_4 , respectively.



- Each server computes $H_s = \langle Q_s | y_s \rangle \in \mathbb{F}_4 = \mathbb{F}_2^2$.
- Servers 1,4: $\mathbf{W}(H_1)$, $\mathbf{W}(H_4)$ to \mathcal{H}_1 , \mathcal{H}_4 , respectively.
- Servers 2,3: $\mathbf{W}(H_s)$ to \mathcal{H}_s^L , Bell measurement on $\mathcal{H}_s^L \otimes \mathcal{H}_s^R$ with outcome $G_s \in \mathbb{F}_2^2$, $\mathbf{W}(G_s)$ to \mathcal{H}_s .



- Each server computes $H_s = \langle Q_s | y_s \rangle \in \mathbb{F}_4 = \mathbb{F}_2^2$.
- Servers 1,4: $\mathbf{W}(H_1)$, $\mathbf{W}(H_4)$ to \mathcal{H}_1 , \mathcal{H}_4 , respectively.
- Servers 2,3: $\mathbf{W}(H_s)$ to \mathcal{H}_s^L , Bell measurement on $\mathcal{H}_s^L \otimes \mathcal{H}_s^R$ with outcome $G_s \in \mathbb{F}_2^2$, $\mathbf{W}(G_s)$ to \mathcal{H}_s .
- Each server sends its qubit to the user.

A QPIR Example: Retrieval

• Measure $\mathcal{H}_2 \otimes \mathcal{H}_3$ to retrieve $G = G_2 + G_3$ (two-sum protocol).

A QPIR Example: Retrieval

- Measure $\mathcal{H}_2 \otimes \mathcal{H}_3$ to retrieve $G = G_2 + G_3$ (two-sum protocol).
- Apply $\mathbf{W}(G)$ to \mathcal{H}_4 and measure to retrieve x_1^K .

A QPIR Example: Retrieval

- Measure $\mathcal{H}_2 \otimes \mathcal{H}_3$ to retrieve $G = G_2 + G_3$ (two-sum protocol).
- Apply $\mathbf{W}(G)$ to \mathcal{H}_4 and measure to retrieve x_1^K .
- Repeat everything to retrieve x_2^K and build the desired file $x_2^K = (x_1^K, x_2^K)$.

A QPIR Example: Retrieval

- Measure $\mathcal{H}_2 \otimes \mathcal{H}_3$ to retrieve $G = G_2 + G_3$ (two-sum protocol).
- Apply $\mathbf{W}(G)$ to \mathcal{H}_4 and measure to retrieve x_1^K .
- Repeat everything to retrieve x_2^K and build the desired file $x_2^K = (x_1^K, x_2^K)$.

Remark

Here we targeted servers 1&2 (systematic encoding). Since the storage is MDS-coded, one can target any two (k in general) servers.

A QPIR Example: Secrecy, Collusion, Rate

User secrecy: queries Q₁,..., Q₄ independent of the index K, two random vectors generated and encoded into queries ⇒ at least three servers needed in order to retrieve the file requested ⇒ 2-collusion.

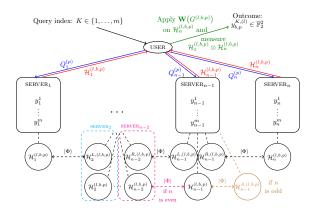
A QPIR Example: Secrecy, Collusion, Rate

- User secrecy: queries Q₁,..., Q₄ independent of the index K, two random vectors generated and encoded into queries ⇒ at least three servers needed in order to retrieve the file requested ⇒ 2-collusion.
- Server secrecy: obtained for any p because the received state of the user is independent of the fragments x_p^i with $i \neq K$ and the measurement outcome $G^{(p)}$ is independent of any file.

A QPIR Example: Secrecy, Collusion, Rate

- User secrecy: queries Q₁,..., Q₄ independent of the index K, two random vectors generated and encoded into queries ⇒ at least three servers needed in order to retrieve the file requested ⇒ 2-collusion.
- Server secrecy: obtained for any p because the received state of the user is independent of the fragments x_p^i with $i \neq K$ and the measurement outcome $G^{(p)}$ is independent of any file.
- Rate: $R = \frac{2 \cdot 2}{2 \cdot 4} = \frac{1}{2}$.

QPIR with *n* Servers



With
$$n = k + t$$
, $R_{PIR} = \begin{cases} \frac{2}{n}, & \text{if } n \text{ is even,} \\ \frac{2}{n+1}, & \text{if } n \text{ is odd,} \end{cases}$

Star Product PIR scheme from Freij-Hollanti et al.

- Coded **storage** with storage code C.
- ullet A retrieval code $\mathcal D$ that determines the privacy.

Star Product PIR scheme from Freij-Hollanti et al.

- ullet Coded storage with storage code \mathcal{C} .
- ullet A retrieval code ${\mathcal D}$ that determines the privacy.
- $\mathcal{C} \star \mathcal{D} = \langle (c_1 d_1, \dots, c_n d_n) \mid c \in \mathcal{C}, d \in \mathcal{D} \rangle$

Star Product PIR scheme from Freij-Hollanti et al.

- ullet Coded storage with storage code \mathcal{C} .
- ullet A retrieval code ${\mathcal D}$ that determines the privacy.
- $\mathcal{C} \star \mathcal{D} = \langle (c_1 d_1, \dots, c_n d_n) \mid c \in \mathcal{C}, d \in \mathcal{D} \rangle$
- Scheme with rate $(d_{\mathcal{C}\star\mathcal{D}}-1)/n$ that protects against $d_{\mathcal{D}^{\perp}}-1$ collusions.

Star Product PIR scheme from Freij-Hollanti et al.

- ullet Coded storage with storage code \mathcal{C} .
- ullet A retrieval code ${\mathcal D}$ that determines the privacy.
- $\mathcal{C} \star \mathcal{D} = \langle (c_1 d_1, \dots, c_n d_n) \mid c \in \mathcal{C}, d \in \mathcal{D} \rangle$
- Scheme with rate $(d_{C\star D}-1)/n$ that protects against $d_{D^{\perp}}-1$ collusions.

Adapted Star Product scheme for t-QPIR

Weakly self-dual codes.

Star Product PIR scheme from Freij-Hollanti et al.

- Coded storage with storage code C.
- ullet A retrieval code ${\mathcal D}$ that determines the privacy.
- $\mathcal{C} \star \mathcal{D} = \langle (c_1 d_1, \dots, c_n d_n) \mid c \in \mathcal{C}, d \in \mathcal{D} \rangle$
- Scheme with rate $(d_{\mathcal{C}\star\mathcal{D}}-1)/n$ that protects against $d_{\mathcal{D}^\perp}-1$ collusions.

Adapted Star Product scheme for t-QPIR

• Weakly self-dual codes.

Lemma

Let q be even with $q \ge n$. For any [n,k] GRS code $\mathcal C$ there exists an [n,t] GRS code $\mathcal D$ such that their star-product $\mathcal S = \mathcal C \star \mathcal D$ is an [n,k+t-1] weakly self-dual GRS code.

Capacity [1]

CAPACITIES	PIR	ref.	SPIR	ref.	QPIR	ref.
Replicated storage, no collusion	$1 - \frac{1}{n}$	[3]	$1 - \frac{1}{n}$	[6]	1	[21]
Replicated storage, t-collusion	$1-\frac{t}{n}$	[4]	$1-\frac{t}{n}$	[25]	$\min\{1, \frac{2(n-t)}{n}\}$	[23]
[n, k]-MDS coded storage, no collusion	$1-\frac{k}{n}$	[5]	$1-\frac{k}{n}$	[7]	$\min\{1, \frac{2(n-k)}{n}\}$	-
[n, k]-MDS coded storage, t-collusion	$1 - \frac{k+t-1}{n}$	[12]	$1 - \frac{k+t-1}{n}$	[7]	$\min\{1, \frac{2(n-k-t+1)}{n}\}$	_

^{1.} M. Allaix, S. Song, L. Holzbaur, T. Pllaha, M. Hayashi, and C. Hollanti. "On the capacity of quantum private information retrieval from MDS-coded and colluding servers," *IEEE Journal on Selected Areas in Communications*, vol. 40, no. 3, pp. 885-898, March 2022.

What's next?

 ${\color{red} \textbf{QSDMM: Quantum Secure D} \textbf{D} istributed \ \textbf{M} atrix \ \textbf{M} ultiplication}$

References:

- M. Allaix, S. Song, L. Holzbaur, T. Pllaha, M. Hayashi, and C. Hollanti. "On the capacity of quantum private information retrieval from MDS-coded and colluding servers," *IEEE Journal on Selected Areas in Communications*, vol. 40, no. 3, pp. 885-898, March 2022.
- M. Allaix, L. Holzbaur, T. Pllaha, C. Hollanti. "High-Rate Quantum Private Information Retrieval with Weakly Self-Dual Star Product Codes," In 2021 IEEE International Symposium on Information Theory, 1046-1051.
- M. Allaix, L. Holzbaur, T. Pllaha, C. Hollanti. "Quantum Private Information Retrieval from Coded and Colluding Servers," IEEE Journal on Selected Areas in Information Theory, 1(2), 599-610, August 2020.
- M. Allaix, L. Holzbaur, T. Pllaha, C. Hollanti. "Quantum Private Information Retrieval from MDS-coded and Colluding Servers," In 2020 IEEE International Symposium on Information Theory, 1059–1064.

Thank You!