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Abstract. It is proved that a module M over a Noetherian local ring R

of prime characteristic and positive dimension has finite flat dimension if
TorRi (eR,M) = 0 for dimR consecutive positive values of i and infinitely many

e. Here eR denotes the ring R viewed as an R-module via the eth iteration

of the Frobenius endomorphism. In the case R is Cohen-Macualay, it suffices
that the Tor vanishing above holds for a single e > logp e(R), where e(R) is the

multiplicity of the ring. This improves a result of D. Dailey, S. Iyengar, and

the second author [6], as well as generalizing a theorem due to C. Miller [14]
from finitely generated modules to arbitrary modules. We also show that if

R is a complete intersection ring then the vanishing of TorRi (eR,M) for single
positive values of i and e is sufficient to imply M has finite flat dimension.

This extends a result of L. Avramov and C. Miller [2].

1. Introduction

For the past half-century the Frobenius endomorphism has proved to be an ef-
fective tool for characterizing when a given finitely generated module M over a
commutative Noetherian local ring R of prime characteristic p has certain homolo-
gical properties. In 1973 Peskine and Szpiro [16] proved that if a finitely generated

module M has finite projective dimension then TorRi (eR,M) = 0 for all positive
integers i and e, where eR denotes the ring R viewed as an R-module via the eth
iteration of the Frobenius endomorphism. Shortly thereafter, Herzog [8] proved the

converse: In fact, he showed that if TorRi (eR,M) = 0 for all i > 0 and infinitely
many e then M has finite projective dimension. Some twenty years later, Koh and
Lee [10] established a stronger version of Herzog’s result: If for some e sufficiently

large TorRi (eR,M) = 0 for depthR+ 1 consecutive positive values of i then M has
finite projective dimension. Later, Miller [14] showed that if R is CM of positive

dimension then dimR consecutive vanishings of TorRi (eR,M) for some e sufficiently
large implies M has finite projective dimension.

One may ask to what extent do the above results hold for arbitrary (i.e., not
necessarily finitely generated) modules. As Tor detects flatness rather than projec-
tivity, we seek conditions which imply a given module has finite flat dimension. (It
is a deep result of Jensen [9] and Raynaud and Gruson [17] that, in the case R has
finite Krull dimension, a module M has finite flat dimension if and only if it has
finite projective dimension. We choose not to make use of this result in this paper,
however.) In [15], the second author together with M. Webb proved the analogue

Date: April 2, 2019.

2010 Mathematics Subject Classification. 13D05; 13D07, 13A35.
Key words and phrases. Frobenius endomorphism, flat dimension, injective dimension, com-

plete intersection.

1



2 T. FUNK AND T. MARLEY

of Peskine and Szpiro’s result for modules of finite flat dimension; that is, if M
has finite flat dimension then TorRi (eR,M) = 0 for all positive integers i and e.
Further, it was shown that that the analogue of Herzog’s result holds for arbitrary
modules as well. Subsequently, Dailey, Iyengar and the second author [6] showed

that if TorRi (eR,M) = 0 for dimR+ 1 consecutive positive values of i and infinitely
many e, then M has finite flat dimension. The question remains whether, as in the
results of Koh, Lee, and Miller, one can get by with fewer consecutive vanishings
for arbitrary modules when dimR > 0.

In the present paper, we show that in fact dimR consecutive vanishings of
TorRi (eR,M) for positive values of i and infinitely many e is sufficient to prove
that M has finite flat dimension if dimR > 0; if R is Cohen-Macaulay, it suffices
to show these vanishings hold for some e greater than the multiplicity of the ring.

We also prove in the case R is a local complete intersection ring that the vanishing
of TorRi (eR,M) for some positive integers i and e imply that M has finite flat
dimension. This generalizes a result of Avramov and Miller [2], who established
this for finitely generated modules. We also show that all of the above results are
valid for complexes. The following theorem summarizes our main results:

Theorem 1.1. Let (R,m) be a local ring of prime characteristic p and positive
dimension d. Let M be an R-complex such that H∗(M) is bounded above. The
following are equivalent:

(a) M has finite flat dimension;

(b) There exists t > sup H∗(M) such that TorRi (eR,M) = 0 for t 6 i 6 t + d − 1
and infinitely many e.

If R is Cohen-Macaulay, condition (a) is equivalent to:

(c) There exists t > sup H∗(M) such that TorRi (eR,M) = 0 for t 6 i 6 t + d − 1
for some e > logp e(R), where e(R) denotes the multiplicity of R.

If R is a local complete intersection of arbitrary dimension, then condition (a) is
equivalent to:

(d) TorRi (eR,M) = 0 for some i > sup H∗(M) and some e > 0.

Analogous results hold for ExtiR(eR,M) and injective dimension in the case the
Frobenius endomorphism is finite. In fact, with the exception of the proof of (d) im-
plies (a), our method of proof is to first establish the results for injective dimension
and then deduce the corresponding statements for flat dimension using standard
arguments.

2. Preliminaries

Throughout this paper (R,m, k) will denote a commutative Noetherian local ring
with maximal ideal m and residue field k. In the case R has prime characteristic
p, we let f : R → R denote the Frobenius endomorphism; i.e., f(r) = rp for every
r ∈ R. For an integer e > 1 we let eR denote the ring R viewed as an R-algebra
via fe; i.e., for r ∈ R and s ∈ eR, r · s := fe(r)s = rp

e

s. If eR is finitely generated
as an R-module for some (equivalently, all) e > 0, we say that R is F -finite.

We refer the reader to [3] for terminology and conventions regarding complexes.
If M is an R-complex, we write M∗ (respectively, M∗) to emphasize when we are
indexing M homologically (respectively, cohomologically). It will occasionally be
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useful to work in the derived category of R, which will be denoted by D(R). We
use the symbol ‘'’ to denote an isomorphism in D(R).

We first establish how the R-algebra eR (i.e., restriction of scalars) behaves with
respect to flat extensions. Much of this is folklore, but we include it for the reader’s
convenience.

Lemma 2.1. Consider a commutative square of ring homomorphisms:

A B

C D

where B is flat over A, and D is flat over C. Then for any A-complex M and any
C-complex N one has for each i an isomorphism of D-modules

TorAi (M,N)⊗C D ∼= TorBi (M ⊗A B,N ⊗C D).

Proof. We have the following isomorphisms in D(D):

(M ⊗L
A N)⊗C D ' (M ⊗L

A D)⊗L
C N

'M ⊗L
A (B ⊗L

B D)⊗L
C N

' (M ⊗A B)⊗L
B (D ⊗C N).

Taking homology and using that −⊗C D is exact gives the desired result. �

Corollary 2.2. Suppose R has prime characteristic and S is a flat R-algebra.
Let M be an R-complex and e a positive integer. Then for each i there is an
isomorphism of eS-modules

TorRi (M, eR)⊗eR
eS ∼= TorSi (M ⊗R S, eS).

Proof. We have a commutative square of ring maps:

R S

eR eS

Since S is flat over R, eS is flat over eR. The result now follows from Lemma 2.1. �

Lemma 2.3. Let (R,m) be a local ring of prime characteristic p which is F-finite.
Let x be an indeterminate over R, S := R[x]mR[x], and T := (eR)[x]n(eR)[x], where
n is the maximal ideal of eR. Then

(a) eS is a free T -module of rank pe.
(b) T is a finitely generated S-module.
(c) S is F-finite.
(d) For each R-complex M with H∗(M) bounded below and for each i, there is an

isomorphism of eS-modules

ExtiS(eS,M ⊗R S) ∼= HomT (eS,ExtiR(eR,M)⊗R S).

Proof. Let A = R[x], B = (eR)[x], and C = (eR)[x
1
pe ] ∼= eA. Note that C is a free

B-module of rank pe and B is a f.g. A-module. Let U = A \mA, V = B \ nB, and
W = C \ nC. Then AU = S. It is straightforward to check that T = BV = BU and
eS = CW = CV . Hence, (a), (b), and (c) are immediate.
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We have the following isomorphisms of eS-modules.

HomT (eS,ExtiR(eR,M)⊗R S) ∼= HomT (eS,ExtiS(T,M ⊗R S))

∼= HomT (eS,Hi(RHomS(T,M ⊗R S)))

∼= Hi(RHomT (eS,RHomS(T,M ⊗R S)))

∼= Hi(RHomS(eS,M ⊗R S))

∼= ExtiS(eS,M ⊗R S).

The first isomorphism follows since S is flat over R, eR is finitely generated over
R, and H∗(M) is bounded below (see [3, Lemma 4.4(F)]). The third isomorphism
holds as eS is a free T -module.

�

Corollary 2.4. With the notation as in part (d) of Lemma 2.3, for each i we have
that ExtiR(eR,M) = 0 if and only if ExtiS(eS,M ⊗R S) = 0.

Proof. Since HomT (eS,−) and −⊗R S are faithful functors, the result follows from
part (4) of Lemma 2.3. �

The following result is also well-known:

Lemma 2.5. Let R be a commutative Noetherian ring, M , N R-complexes, and I
an injective R-module.

(a) For all i we have isomorphisms

HomR(TorRi (M,N), I) ∼= ExtiR(M,HomR(N, I)).

(b) Suppose H∗(M) is bounded below, Hi(M) is finitely generated for all i, and
H∗(N) is bounded below. Then for all i we have isomorphisms

TorRi (M,HomR(N, I)) ∼= HomR(ExtiR(M,N), I).

Proof. Using adjunction and [3, Lemma 4.4(I)], we have the following isomorphisms
in D(R):

HomR(M ⊗L
R N, I) ' RHomR(M ⊗L

R N, I)

' RHomR(M,RHomR(N, I))

' RHomR(M,HomR(N, I))

and

M ⊗L
R HomR(N, I) ' HomR(RHomR(M,N), I).

Taking homology and using that HomR(−, I) is an exact functor yields the desired
isomorphisms.

�

For an R-complex M, let M ] denote the complex which has the same underlying
graded module as M and whose differentials are all zero. Let fdRM denote the flat
dimension of M ; that is,

fdRM = inf{sup H∗(F
]) | F 'M, F semi-flat}.

Similarly, idRM will denote the injective dimension of M , i.e.,

idRM = inf{sup H∗(I]) | I 'M, I semi-injective}.
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Corollary 2.6. Let (R,m) be a local ring, E = ER(R/m), and let (−)v denote the
functor HomR(−, E). Let M be an R-complex. Then

(a) fdRM 6 idRM
v with equality if H∗(M) is bounded below.

(b) If H∗(M) is bounded below, then idRM = fdRM
v

Proof. Using [3, Proposition 5.3.F] and Lemma 2.5 with I = E, we have:

fdRM = sup{j | TorRj (R/p,M) 6= 0 for some p ∈ SpecR}

= sup{j | TorRj (R/p,M)v 6= 0 for some p ∈ SpecR}

= sup{j | ExtjR(R/p,Mv) 6= 0 for some p ∈ SpecR}
6 idRM

v,

where equality holds in the last line if H∗(Mv) is bounded below, or equivalently,
if H∗(M) is bounded below. Part (b) is proved similarly.

�

We note the following remark, which will be needed in the subsequent sections:

Remark 2.7. Let S be a faithfully flat R-algebra and M an R-complex. Then

(a) fdRM = fdSM ⊗R S;
(b) If H∗(M) is bounded below, then idRM 6 idSM ⊗R S.

Proof. For part (a), note that fdRM > fdSM ⊗R S, since −⊗R S preserves quasi-
isomorphisms and F ⊗R S is a semi-flat S-complex whenever F is a semi-flat R-
complex. For the reverse inequality, we have by [3, Propositon 5.3.F],

fdRM = sup{j | TorRj (R/p,M) 6= 0 for some p ∈ SpecR}

= sup{j | TorRj (R/p,M)⊗R S 6= 0 for some p ∈ SpecR}

= sup{j | TorSj (S/pS,M ⊗R S) 6= 0 for some p ∈ SpecR}
6 fdSM ⊗R S.

For part (b), we have by [3, Proposition 5.3.I] that

idRM = sup{j | ExtjR(R/p,M) 6= 0 for some p ∈ SpecR}

= sup{j | ExtjR(R/p,M)⊗R S 6= 0 for some p ∈ SpecR}

= sup{j | ExtjS(S/pS,M ⊗R S) 6= 0 for some p ∈ SpecR}
6 idSM ⊗R S.

�

Finally, we will need the following result for zero-dimensional rings. It is a special
case of Theorem 1.1 of [6] (or more properly, its dual), but as the proof is short,
we include it here for the reader’s convenience:

Proposition 2.8. Let (R,m, k) be a zero-dimensional local ring of prime charac-
teristic p. Let M be an R-module and e > logp λ(R) an integer, where λ(−) denotes

length. If ExtiR(eR,M) = 0 for some i > 0 then M is injective.

Proof. By [4, Proposition 4.1 and Corollary 5.3], if M has finite injective dimension
then idRM 6 dimR. Hence, it suffices to show idRM <∞. By replacing M with
a syzygy of an injective resolution of M , we may assume Ext1R(eR,M) = 0. Since
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pe > λ(R), we have mp
e

= 0. Then m · eR = 0 and thus eR is a k-vector space.
Hence, eR ∼= k` as R-modules, for some (possibly infinite) ` > 0. Thus, the condition
Ext1R(eR,M) = 0 implies Ext1R(k,M) = 0. Hence, M is injective. �

3. The Cohen-Macaulay case

We first prove the following elementary result concerning maps to injective mo-
dules.

Lemma 3.1. Let R be a commutative ring and T a finitely generated faithful R-
module. Suppose α : M → I is a homomorphism of R-modules where I is an
injective module. If α∗ : HomR(T,M)→ HomR(T, I) is surjective, then so is α.

Proof. Let e ∈ I and f : R→ I be defined by f(r) = re. As T is a finitely generated
faithful module, there exists an R-monomorphism g : R → Tn for some n. Let
g(1) = (u1, . . . , un). As I is injective, there exists an R-homomorphism h : Tn → I
such that f = hg. As α∗ is surjective, so is (α∗)

n : HomR(Tn,M)→ HomR(Tn, I).
Thus, there exists w1, . . . , wn ∈ HomR(T,M) such that h = (αw1, . . . , αwn). Then
e = h(g(1)) = h(u1, . . . , un) = α(w1(u1))+· · ·+α(wn(un)) ∈ imα. As e is arbitrary,
α is surjective. �

For anR-complexM and p ∈ SpecR, we let µiR(p,M) := dimk(p) ExtiRp
(k(p),Mp).

If H∗(M) is bounded below, µi(p,M) is the number (possibly infinite) of copies of
ER(R/p) in Ii, where I is a minimal semi-injective resolution of M .

Theorem 3.2. Let (R,m, k) be a d-dimensional Cohen-Macaulay local ring of
prime characteristic p and which is F -finite. Let e > logp e(R) be an integer and
M an R-complex such that H∗(M) is bounded above. Suppose there exists an in-
teger t > sup H∗(M) such that ExtiR(eR,M) = 0 for t 6 i 6 t + r − 1, where
r = max{1, d}. Then M has finite injective dimension.

Proof. If idRM < t − 1 there is nothing to prove. Otherwise, let J be a minimal
semi-injective resolution of M and Z := Zt−1(J) be the (necessarily nonzero) sub-
complex consisting of the cycles of degree t− 1 of J . As t− 1 > sup H∗(M), J>t−1

is a minimal semi-injective resolution of Z and idRM = idR Z. Furthermore, from
the exact sequence of complexes

0→ J>t−1 → J → J<t−1 → 0

we have that ExtiR(eR,Z) ∼= ExtiR(eR,M) for all i > t. Hence, without loss of
generality, we may assume (after shifting) that M is a module concentrated in
degree zero and ExtiR(eR,M) = 0 for i = 1, . . . , r. Also, by replacing R with
R[x]mR[x], if necessary, we may assume R has an infinite residue field (Lemma 2.3
and Remark 2.7).

We proceed by induction on d, with the case d = 0 being established by Propo-
sition 2.8. Suppose d > 1 (so r = d) and let p 6= m be a prime ideal of R. As R is
F -finite, we have ExtiRp

(eRp,Mp) = 0 for 1 6 i 6 d. As d > max{1,dimRp} and

e(R) > e(Rp) (see [12]), we have idRMp <∞ by the induction hypothesis. Hence,
idRMp 6 dimRp 6 d− 1 by [4, Proposition 4.1 and Corollary 5.3]. It follows that
µi(p,M) = 0 for all i > d and all p 6= m.

For convenience, we let S denote the R-algebra eR and n the maximal ideal of
S. As S/n is infinite, we may choose a system of parameters x = x1, . . . , xd ∈ n
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such that (x) is a minimal reduction of n. Then λS(S/(x)) = e(S) = e(R) and
m · S/(x) = n[p

e]S/(x) = 0, as pe > λS(S/(x)).
As J is a minimal injective resolution of M , we have by assumption that

(3.1) HomR(S, J0)
φ0

−→ HomR(S, J1)→ · · · → HomR(S, Jd)
φd

−→ HomR(S, Jd+1)

is exact. Let L be the injective S-envelope of cokerφd and ψ : HomR(S, Jd+1)→ L
the induced map. Hence,

0→ HomR(S, J0)→ · · · φ
d

−→ HomR(S, Jd+1)
ψ−→ L

is acyclic and in fact the start of an injective S-resolution of HomR(S,M). Set-
ting S = S/(x) and applying HomS(S,−) to the above resolution yields an exact
sequence

(3.2) HomS(S,HomR(S, Jd))
φd

−→ HomS(S,HomR(S, Jd+1))
ψ−→ HomS(S,L).

The exactness holds as pdS S = d and thus Extd+1
S (S,HomS(S,M)) = 0.

Since S is a finitely generated R-module and annihilated by m, we have S ∼= kt

as R-modules for some t. Thus, the exact sequence (3.2) is naturally isomorphic to

HomR(kt, Jd)
φd

−→ HomR(kt, Jd+1)
ψ−→ HomS(S,L).

As J is minimal, we have φd is the zero map and hence ψ is injective.

Claim: ψ is injective.
Proof: Let K = kerψ. Applying HomS(S,−) to

0→ K → HomR(S, Jd+1)
ψ−→ L

we see that HomS(S,K) = 0. Since µd+1(p,M) = 0 for all primes p 6= m, we
obtain that Jd+1 = ⊕α∈IER(k) for some (possibly infinite) index set I. Since S is

a finite R-module, we have HomR(S, Jd+1)p ∼= HomRp
(Sp, J

d+1
p ) = 0 for all p 6= m.

Hence, HomR(S, Jd+1)q = 0 for all q ∈ SpecS, q 6= n. Thus HomR(S, Jd+1), and

consequently K, is n-torsion. Thus, if K 6= 0, we must have HomS(S,K) 6= 0. We
conclude K = 0 and ψ is injective.

As ψ is injective we have from (3.1) that φd = 0 and hence φd−1 is surjective.
Since S is a finitely generated faithful R-module, we see by Lemma 3.1 that the map
Jd−1 → Jd is surjective. As J is minimal injective resolution of M , this implies
J i = 0 for all i > d and so idRM <∞.

�

As a corollary, we obtain the equivalence of conditions (a) and (c) of Theorem
1.1:

Corollary 3.3. Let (R,m) be a d-dimensional Cohen-Macaulay local ring of prime
characteristic p and M an R-complex such that H∗(M) is bounded above. Suppose

there exist integers e > logp e(R) and t > sup H∗(M) such that TorRi (eR,M) = 0
for t 6 i 6 t+ r − 1, where r = max{1, d}. Then M has finite flat dimension.

Proof. By [11, Section 3] there exists a faithfully flat extension S of R such that
S is a d-dimensional CM local ring with an algebraically closed residue field and
e(S) = e(R). Furthermore, by Corollary 2.2, TorSi (eS,M ⊗R S) = 0 for t 6 i 6
t+ r− 1. Hence, by replacing R with S and M with M ⊗R S, we may assume R is
F -finite. By Lemma 2.5(a), ExtiR(eR,Mv) ∼= TorRi (eR,M)v = 0 for t 6 i 6 t+r−1.
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As sup H∗(Mv) = sup H∗(M), we have by Theorem 3.2 that idRM
v < ∞. Hence,

fdRM <∞ by Lemma 2.6. �

4. The general case

We begin this section by proving a basic result concerning E = ER(k), the
injective hull of the residue field of a local ring (R,m, k).

Lemma 4.1. Let (R,m, k) be a local ring. Then

(0 :E (0 :R m)) = mE.

Proof. One containment is clear. For the reverse inclusion, since E ∼= ER̂(R̂/m̂),

m̂E = mE and (0 :R̂ m̂) = (0 :R m)R̂, we may replace R by R̂ and assume R is
complete. Consider the composition of maps

(4.1) HomR(R/(0 :R m), E) ∼= (0 :E (0 :R m))→ E → E/mE ∼= E ⊗R R/m.

Dualizing, we have the composition

(E ⊗R R/m)v ∼= (0 :R m)→ R→ R/(0 :R m),

which is clearly the zero map. Thus, the composition (4.1) is the zero map as well,
implying (0 :E (0 :R m)) ⊆ mE.

�

We use the above lemma to prove the following:

Lemma 4.2. Let (R,m, k) be a local ring and φ : J → J ′ a homomorphism of

injective R-modules. Suppose HomR(R/m, J)
φ∗−→ HomR(R/m, J ′) is zero. Then

φ(J) ⊆ mJ ′.

Proof. It suffices to prove the lemma in the case J = ER(R/p) and J ′ = ER(R/q),
for p, q ∈ SpecR,

Case 1: q 6= m.
Then mJ ′ = mER(R/q) = mRq · ER(R/q) = J ′, as ER(R/q) is an Rq-module.

So the lemma holds trivially.

Case 2: q = m and p 6= m.
Since J = ER(R/p) is an Rp-module, we have

(0 :R m)φ(J) = φ((0 :R m)Rp · J) = φ(0) = 0.

Hence, φ(J) ⊆ (0 :J′ (0 :R m)) = mJ ′ by Lemma 4.1.

Case 3: p = q = m.

In this case, φ is multiplication by some element s ∈ R̂. If s 6∈ m̂, then φ is
an isomorphism, contradicting that HomR(R/m, φ) is the zero map. Thus, s ∈ m̂.
Hence, φ(J) ⊆ m̂J ′ = mJ ′.

�

Lemma 4.3. Let (R,m) be a local ring of depth zero and let ` be an integer such
that (0 :R m) 6⊂ m`. Let J be an injective module such that µ(m, J) 6= 0. Then
(0 :J m`) 6⊂ mJ .
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Proof. It suffices to consider the case J = E := ER(k). Since the composition
(0 :R m)→ R→ R/m` is nonzero, the composition

(R/m`)v ∼= (0 :E m`)→ E → E/mE ∼= HomR(R/m, R)v

is also nonzero. Hence, (0 :E m`) 6⊂ mE. �

Lemma 4.4. Let φ : (R,m) → (S, n) be a local homomorphism such that S is
a finitely generated R-module and depthS = 0. Let ` be an integer such that

(0 :S n) 6⊆ n` and suppose mS ⊆ n`. Let J1 σ−→ J2 τ−→ J3 be a sequence of maps
of injective modules such that such that HomR(R/m, σ) = HomR(R/m, τ) = 0. If

HomR(S, J1)
σ∗−→ HomR(S, J2)

τ∗−→ HomR(S, J3) is exact then µ(m, J2) = 0.

Proof. Let J̃ i = HomR(S, J i) for i = 1, 2, 3, which are injective S-modules. Since
mS ⊆ n`, we have that S/n` ∼= kr as R-modules for some r > 0, where k = R/m.
From the commutative diagram

HomS(S/n`, J̃1) HomS(S/n`, J̃2)

HomR(S/n`, J1) HomR(S/n`, J2)

⊕HomR(k, J1) ⊕HomR(k, J2)

σ∗

∼= ∼=

∼= ∼=

⊕σ

As σ is the zero map by hypothesis, we see that σ∗ is zero. Similarly, the map

τ∗ : HomS(S/n`, J̃2)→ HomS(S/n`, J̃3)

is zero. This implies that (0 :
J̃2 n`) ⊆ ker τ∗. As σ∗ is zero, we also have that the

map HomS(S/n, J̃1) → HomS(S/n, J̃2) is zero. By Lemma 4.2, this implies that

imσ∗ ⊆ nJ̃2.
Suppose µ(m, J2) 6= 0. Since HomS(S,ER(R/m)) ∼= ES(S/n) by [13, Lemma

3.7], we then have µ(n, J̃2) 6= 0. By Lemma 4.3, we have that (0 :
J̃2 n`) 6⊂ nJ̃2.

Hence, ker τ∗ 6⊂ imσ∗, a contradiction. Therefore, µ(m, J2) = 0.
�

Theorem 4.5. Let (R,m, k) be a d-dimensional local ring of prime characteristic
p which is F -finite. Let M be an R-complex such that H∗(M) is bounded above.
Suppose there exists an integer t > sup H∗(M) such that for infinitely many integers
e one has ExtiR(eR,M) = 0 for t 6 i 6 t + r − 1, where r = max{1, d}. Then M
has finite injective dimension.

Proof. Precisely as in the initial paragraph of the proof of Theorem 3.2, we may
assume M is a module concentrated in degree 0 and t = 1. We proceed by induction
on d, with the case d = 0 being covered by Proposition 2.8. Suppose now that d > 1
(so r = d) and let p 6= m be a prime ideal. Since R is F -finite, ExtiRp

(eRp,Mp) =

ExtiR(eR,M)p = 0 for infinitely many e and i = 1, . . . , d. Since d > max{1,dimRp},
we have idRMp <∞ by the induction hypothesis. Hence, idRMp 6 dimRp 6 d−1.
Thus, µi(p,M) = 0 for all i > d and all p 6= m. It suffices to prove µd(m,M) = 0.

If R is Cohen-Macaulay we are done by Theorem 3.2. Hence we may assume
s := depthR < d. Let e > 1 be arbitrary and let T denote the local ring eR and
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q the maximal ideal of T . Let x = x1, . . . , xs ∈ q be a maximal regular sequence
in T and set S := T/(x) and n := qS. Since depthS = 0, there exists an integer
` (independent of e) such that (0 :S n) 6⊂ n`. Now choose e sufficiently large such
that pe > ` and ExtiR(T,M) = 0 for i = 1, . . . , d. Let

J := 0→ J0 → J1 → J2 → · · ·
be a minimal injective resolution of M , and for each i let J̃ i denote HomR(T, J i).
As ExtiR(T,M) = 0 for 1 6 i 6 d, we see that

0→ J̃0 → J̃1 → · · · → J̃d → J̃d+1

is part of an injective T -resolution of M̃ := HomR(T,M). Since pdT S = s we

have that ExtiT (S, M̃) = 0 for i > s. In particular, as d > s and HomT (S, J̃ i) ∼=
HomR(S, J i) for all i, we have that

HomR(S, Jd−1)→ HomR(S, Jd)→ HomR(S, Jd+1)

is exact. Since mS ⊆ n[p
e] ⊆ n`, we obtain that µd(m,M) = µ(m, Jd) = 0 by

Lemma 4.4. Thus, idRM <∞. �

We now obtain the equivalence of conditions (a) and (b) of Theorem 1.1:

Corollary 4.6. Let (R,m) be a d-dimensional local ring of prime characteristic
p and M an R-complex such that H∗(M) is bounded above. Suppose there ex-
ist an integer t > sup H∗(M) such that for infinitely many integers e one has

TorRi (eR,M) = 0 for t 6 i 6 t + r − 1, where r = max{1, d}. Then M has finite
flat dimension.

Proof. The argument is similar to the proof of Corollary 3.3, except one uses The-
orem 4.5 in place of Theorem 3.2. �

5. The case of complete intersections

In this section, we prove that a theorem of Avramov and Miller [2] concerning
finitely generated modules over complete intersections holds for arbitrary modules,
and in fact any complex whose homology is bounded above. The proof mostly
follows the argument of Dutta [7], until the end when we apply [6, Theorem 1.1].

Theorem 5.1. Let (R,m) be a local complete intersection ring of prime charac-
teristic p. Let M be an R-complex such that H∗(M) is bounded above. Suppose

TorRi (eR,M) = 0 for some e > 0 and some i > sup H∗(M). Then M has finite flat
dimension.

Proof. Without loss of generality, we may assume R is complete. Then R ∼= A/(x)
where (A, n) is a complete regular local ring and x = x1, . . . , xr ∈ n2 is a regular
sequence. Since A is regular the eth iteration of the Frobenius map fe : A→ A is
flat. Thus, the map h : A/(x) → A/(xpe

), given by h(r) = rpe for r ∈ A/(x), is
flat as well. Let T denote the ring A/(xpe

) viewed as an R-algebra via h. Also, let

S := T/(x) and M̃ := T ⊗RM . Note that as an R-algebra, S ∼= eR. Since T is flat
over R, we have isomorphisms in D(R)

S ⊗L
RM ' (S ⊗L

T T )⊗L
RM ' S ⊗L

T (T ⊗L
RM) ' S ⊗L

T M̃.

Taking homology, we have an isomorphism for all j

(5.1) TorRj (S,M) ∼= TorTj (S, M̃).
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Claim 1: TorRj (eR,M) = 0 for all j > i.

Proof: It suffices to show that TorRi+1(S,M) = 0. By (5.1), it suffices to

prove that whenever TorTi (S, M̃) = 0 for some i > sup H∗(M̃) = sup H∗(M) then

TorTi+1(S, M̃) = 0. Let φ : T → S be the canonical surjection and K = kerφ. As x
is a regular sequence on A, K has a finite filtration of T -submodules such that each

factor module is isomorphic to S. Thus, TorTi (K, M̃) = 0. As TorTj (T, M̃) = 0 for

all j > sup H∗(M̃), we obtain that TorTi+1(S, M̃) = 0.

Claim 2: TorRj (e+1R,M) = 0 for all j > i.
Proof: As f : A → A is flat, by base change we have the induced map g :

T → A/(xpe+1

) is also flat. Let T ′ denote the ring A/(xpe+1

) viewed as a T -
algebra via g (and hence as an R-algebra via gh). Note that T ′/(x) = e+1R. Let

M̂ = T ′ ⊗RM = T ′ ⊗T M̃ . Since T ′ is flat over R, we have isomorphisms in D(R)

T ′/(x)⊗L
RM ' (T ′/(x)⊗L

T ′ T
′)⊗L

RM ' T ′/(x)⊗L
T ′ (T ′ ⊗L

RM) ' T ′/(x)⊗L
T ′ M̂.

Taking homology, we have an isomorphism for all j

(5.2) TorRj (T ′/(x),M) ∼= TorT
′

j (T ′/(x), M̂).

Hence, it suffices to show that TorT
′

j (T ′/(x), M̂) = 0 for all j > i. By (5.1) and

Claim 1, we have that TorTj (T/(x), M̃) = 0 for all j > i. Since T ′ is flat over T , we

obtain that TorT
′

j (T ′/(xp), M̂) = 0 for j > i.

As x = x1, . . . , xr is a regular sequence on A and T ′ = A/(xpe+1

), we have exact
sequences of T -modules

(5.3) 0→ T ′/(x1, x
p
2, . . . , x

p
r)→ T ′/(xp+1

1 , xp2, . . . , x
p
r)→ T ′/(xp)→ 0

(5.4) 0→ T ′/(xp)→ T ′/(xp+1
1 , xp2, . . . , x

p
r)→ T ′/(x1, x

p
2, . . . , x

p
r)→ 0,

where the initials maps in (5.3) and (5.4) are multiplication by xp1 and x1, respec-

tively. Using that TorT
′

j (T ′/(xp), M̂) = 0 for j > i in conjunction with (5.3) and
(5.4), we get an injection

TorT
′

j (T ′/(x1, x
p
2, . . . , x

p
r), M̂) ↪−→ TorT

′

j (T ′/(x1, x
p
2, . . . , x

p
r), M̂)

for all j > i which is induced by multiplication by xp1, which is the zero map. Hence

TorT
′

j (T ′/(x1, x
p
2, . . . , x

p
r), M̂) = 0 for all j > i. Repeating this argument for each

of x2, . . . , xr yields that TorT
′

j (T ′/(x), M̂) = 0 for all j > i, which completes the
proof of Claim 2.

Combining Claim 1 and Claim 2 (and iterating), we have TorRj (eR,M) = 0 for
all j > i > sup H∗(M) and infinitely many e. Thus, M has finite flat dimension by
[6, Theorem 1.1]. �

We now deduce the dual version of this result for complexes of finite injective
dimension:

Corollary 5.2. Let (R,m) be a local complete intersection ring of prime charac-
teristic p, and assume R is F -finite. Let M be an R-complex such that H∗(M) is

bounded above. Suppose ExtRi (eR,M) = 0 for some e > 0 and some i > sup H∗(M).
Then M has finite injective dimension.
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Proof. By the argument in the initial paragraph of Theorem 3.2, we may assume
M is a module concentrated in degree zero. As R is F -finite, we have by Lemma
2.5 that TorRi (eR,Mv) = 0 for some positive integers i and e, where (−)v denotes
the functor HomR(−, ER(R/m)). By Theorem 5.1, we have fdRM

v < ∞. Hence,
by Lemma 2.6, idRM = fdRM

v <∞. �
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