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Terminology

A lattice divides the plane into elementary regions, called
cells. A (lattice) region is a connected union of cells.

A tile is a union of two cells that share an edge.

A tiling of a region is a covering of the region by tiles so that
there are no gaps or overlaps. Denote by T (R) the number of
tilings of the region R.
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Classic Results

MacMahon 1900
The number of (lozenge) tilings of a hexagon of sides a, b, c , a, b, c
on the triangular lattice is

a∏
i=1

b∏
j=1

c∏
t=1

i + j + t − 1

i + j + t − 2
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Classic Results

Elkies, Kuperberg, Larsen and Propp 1991
The Aztec diamond region of order n has 2n(n+1)/2 (domino)
tilings.
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Douglas’ Theorem

The square lattice with every second southwest-to-northeast
diagonal drawn in.

C. Douglas 1996 The region of order n has 22n(n+1) tillings.

n=1

n=2
n=3
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Propp’s Problem

In 1999, Propp listed 32 open problems in the field of exact
enumeration of tilings.

Problem 16 asks for a formula of the number of tilings of a
certain quasi-hexagon of sides a, b, c , a, b, c on the square
lattice with every third southwest-to-northeast diagonal drawn
in.

a=3
b=2

c=2

a
b

c
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Propp’s Problem

a=3
b=2

c=2

a
b

c

Ben Wieland showed that if a = b = c then the number of
tilings is a power of 2.

In general case, it does not give a round number of tilings.

There are 17920 = 29.5.7 tilings in the figure.
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Definition of regions

A

B

C

D

d

d

d

d

1

2

3

4

l

l’

a

Denoted by Da(d1, d2, . . . , dk).
D7(4, 2, 5, 4)
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Definition of regions

A

B

C

D

d

d

d

d

1

2

3

4

l

l’

a

A regular cell is a unit square or a triangle pointing away
from the base.

The height is the number of rows of black regular cells.

The width is the number of cells in the bottom row of cells,
i.e. |BC |/

√
2.
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Main results

Theorem (L. 2012)

If the height and the width are equal, then

T (Da(d1, d2, . . . , dk)) = 2C−h(h+1)/2, (1)

where h =height, and C = # black regular cells.
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Definition of regions

A

B

C

D

F

E

a

d

d

d

d’

d’

1

2

3

1

2

Denoted by Ha(d1, . . . , dk ; d ′1, . . . , d
′
l ).

H6(4, 4, 3; 5, 5)
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Definition of regions

A regular cell is a unit square or a triangle pointing away
from the line l .

The upper height is the number of rows of black regular cells
above l .

The lower height is the number of rows of white regular cells
below l .

The width is the number of cells in the bottom row of the
upper part, i.e. |BE |/

√
2.
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Main results

Theorem (L. 2012)

If h1 = h2 < w, then

T (Ha(d1, . . . , dk ; d ′1, . . . , d
′
l )) =2C1−

h1(2w−h1+1)
2

+C2−
h2(2w−h2+1)

2

×
h1∏
i=1

w−h1∏
j=1

h1∏
t=1

i + j + t − 1

i + j + t − 2
, (2)

where h1 is upper height, h2 is lower height, w is the width,
C1 = # black regular cells above l , and C2 = # white regular cells
below l.
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Perfect matchings and dual graph

A perfect matching of G is a set of edges such that each
vertex is adjacent to exactly one selected edge.

Denote by M(G ) the number of perfect matchings of the
graph G .

The dual graph G of a region R is the graph whose vertices
are cells in R and whose edges connect two adjacent cells.
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Bijection between tilings and perfect matchings

We have a bijection between the tilings of R and the perfect
matchings of G
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Structure of dual graphs

The dual graph of a general Douglas region consists of layers
connected by vertical edges.
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The transformation T1

M(G ) = 2# rows of diamonds on leftM(G ′).
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Fundamental transformation T2

M(G ) = 2−(# rows of diamonds on right)M(G ′).
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Proof of Theorem 1

The transformations preserve the condition “the height and the
width are equal”.

M(G1) = 22M(G2)

M(G2) = 2−3M(G3)

M(G3) = 2−6M(G4) = 2−6T (AD8)
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Proof of Theorem 2

2

2

2

2

2

-2 10

10

G1 is the dual graph of H7(4, 6; 2, 4, 3)

M(G1) = 2C1−h1w2C2−h2wM(G2)

M(G3) = 2−h1(h1−1)/22−h2(h2−1)/2M(G2)

M(G1) = 2C1−h1w+h1(h1−1)/22C2−h2w+h2(h2−1)/2M(G3)
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Future projects

Weighted versions of the problems.

Find the number of tilings of a “quasi-polygon”, say
quasi-octagon.
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Questions?

Thank you !

Tri Lai Subgraph Replacements in Enumeration of Tilings



Introduction
Main results

Proof of the main theorems

Reference

M. Ciucu, Perfect matchings and perfect powers. J. Algebraic
Combin., 17 (2003), 335-375.

C. Douglas, An illutrative study of the enumeration of tilings:
Conjecture discovery and proof techniques.

H. Helfgott and I. Gessel, Enumeration of tillings of diamonds
and hexagons with defects, Electron. J. Combin. 6 (1999),
R16.

J. Propp, Emnumeration of matchings: Problems and
progress, New perspectives in algebraic combinatorics,
Cambidge University Press (1999).

N. Elkies, G. Kuperberg, M.Larsen, and J. Propp
Alternating-sign matrices and domino tilings (Part I), J.
Algebraic Combin. 1 (1992), 111-132.

Tri Lai Subgraph Replacements in Enumeration of Tilings



Introduction
Main results

Proof of the main theorems

Appendix I: Sum formula for the asymmetric case

l

l’

A

B

C

F

E

D

d

d

c

c

c

c

d’

d’

1

2

1

2

3

4

2

1
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Appendix I: Sum formula for the asymmetric case

φH(j) =


1 if jth middle layer is right-odd

−1 if jth middle layer is left-odd

1 otherwise,

(3)
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Appendix I: Sum formula for the asymmetric case

Define the slope by

Φ(H) =
t∑

j=1

φH(j). (4)

h0 =
t∑

j=1

(ci − φH(j))/2. (5)

Theorem

If h1 = h2 = h < w and h0 > 0 then

M(H) =2C+C ′−h(2a+2m−2n−h+1)−h0(h0−1)/2

×M
(

Ch0,h+h0−1
a+m−n−h,h0+Φ(H)+2h,h

)
(6)
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Appendix I: Sum formula for the asymmetric case

Define

V(a,b,a)(r1, . . . , ra) =
∏

1≤i<j≤a

rj − ri
j − i

. (7)

(a) (b)

a=3

c=3

b=7

d=3

b=7

a=3

c=3

d=4

e-1=4
e-1=8
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Appendix I: Sum formula for the asymmetric case

Lemma

(a). If e 6= c + d − 1, then M(Cd ,e
a,b,c) = 0.

(b). If d ≤ a, then

M
(

Cd ,c+d−1
a,b,c

)
= 2

d(d−1)
2

×
∑

V(b,a,b)(A ∪ {a + c + 1, . . . , a + b})V(d ,c,d)(B), (8)

where A ∪ B = {1, . . . , c + d}, |A| = c and |B| = d.
(c). If d < a, then

M
(

Cd ,c+d−1
a,b,c

)
= 2

d(d−1)
2

∑
V(b,a,b)(A ∪ {a + c + 1, . . . , a + b})

V(d ,c,d)(B ∪ {c + a + 1, . . . , c + d}), (9)

where A ∪ B = {1, . . . , c + a}, |A| = c and |B| = a.
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Appendix II: Ben Wieland’s case

Lemma (Graph-Splitting Lemma)

Let G = (V1,V2,E ) be a bipartite graph. Let H be an induced
subgraph of G .
(a) Assume that

(i) The separating condition: there are no edges of G connecting
a vertex in V (H) ∩ V1 and a vertex in V (G − H),

(ii) The balancing condition: |V (H) ∩ V1| = |V (H) ∩ V2|.
Then

M(G ) = M(H) ·M(G − H) (10)

(b) If H satisfies the separating condition and but
|V (H) ∩ V1| > |V (H) ∩ V2|, then M(G ) = 0.
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Appendix II: Ben Wieland’s case

AD

AD

1

2

T (H) = 2C1−h1w2C2−h2wM(G )

M(G ) = M(AD1)M(G − AD1)

M(G − AD1) = M(AD2)M(G − AD1 − AD2)
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Appendix III: Classic local transformations

Remove leaves: M(G ) = M(G ′).

Vertex-splitting lemma: M(G ) = M(G ′).

Spider lemma (Urban renewal): M(G ) = (ac + bd)M(G ′).

a b

cd

A B

CD

Star lemma: M(G ) = 1/t.M(G ′) for t > 0.
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Appendix IV: Proof of the transformation T1

(a) (b) (c)
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Appendix V: Proof of the transformation T2
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