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Exponential growth and decay



Examples

Many quantities in nature change according to an exponential
growth or decay function of the form P = P0e

kt , where P0 is the
initial quantity and k is the continuous growth or decay.
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Examples

Problem 1. The Environmental Protection Agency recently
investigated a spill of radioactive iodine. The radiation level at
the site was about 2.4 milirems/hour (four times the
maximum acceptable limit of 0.6 milirems/hour), so the EPA
ordered an evacuation of the surrounding area. The level of
radiation from the iodine source decays as a continuous hourly
rate of k = −0.004.

What was the level of radiation 12 hours later?

Find the number of hours until the level of radiation reached
the maximum acceptable limit, and the inhabitants could
return.

Formula of the radiation level: R = 2.4e−0.004t .

After 12 hours: R = 2.4e(−0.004)(12)
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Problem 1. The Environmental Protection Agency recently
investigated a spill of radioactive iodine. The radiation level at
the site was about 2.4 milirems/hour (four times the
maximum acceptable limit of 0.6 milirems/hour), so the EPA
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Find the number of hours until the level of radiation reached
the maximum acceptable limit, and the inhabitants could
return.

Formula of the radiation level: R = 2.4e−0.004t .

After 12 hours: R = 2.4e(−0.004)(12) = 2.2875
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Examples

Problem 1. The Environmental Protection Agency recently
investigated a spill of radioactive iodine. The radiation level at
the site was about 2.4 milirems/hour (four times the
maximum acceptable limit of 0.6 milirems/hour), so the EPA
ordered an evacuation of the surrounding area. The level of
radiation from the iodine source decays as a continuous hourly
rate of k = −0.004.

What was the level of radiation 12 hours later?

Find the number of hours until the level of radiation reached
the maximum acceptable limit, and the inhabitants could
return.

Formula of the radiation level: R = 2.4e−0.004t .

After 12 hours: R = 2.4e(−0.004)(12) = 2.2875

Find t so that: 0.6 = 2.4e−0.004t
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Examples

Problem 2. The population of Kenya was 19.5 million in
1984 and 39.0 million in 2009. Assuming that the population
increases exponentially, find a formula for the population of
Kenya as a function of time.

P = P0e
kt , where t is the number of years since 1984.

We need to find P0 and k.

P0 = 19.5

39 = 19.5ek·25
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Doubling time and Half-life

Definition

The doubling time of an exponentially increasing quantity is the
time required for the quantity to double.
The half-life of an exponentially decaying quantity is the time
required for the quantity reduced by a factor of one half.
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Examples

Harder problem: Show that every exponentially increasing
function has a fixed doubling time.
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Examples

Problem 3. The release of chlorofluorocabons (CFC) used in
air conditioners and household sprays destroys the ozone in
the upper atmosphere. The quantity of ozone, Q, is decaying
exponentially at a continuous rate of 0.25% per year. What is
the half-life of ozone?

We need to find t (in years) so that: Q0
2 = Q0e

−0.0025t .
1
2 = e−0.00025t

ln
(
1
2

)
= −0.0025t

t = ln(1/2)
−0.0025
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Examples

Problem 4. If $100,000 is deposited in an account paying
interest at a rate of 5% per year, compounded continuously,
the how long does it take for the balance in the account to
reach $150,000?

We need to find t so that: 150, 000 = 100, 00e0.05t .
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Rule of 70

Extra question: Calculate the doubling time, D, for interest
rates of 1%, 3%, 5%, and 6% per year, compounded
continuously.

Assume the doubling time corresponding to the interest rate
i% per year is Di . Use the results in the previous part to
compare Di and 70/i .
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Rule of 70

To compute the approximate doubling time of an
investment, divide 70 by the percent annual interest rate.
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Present and future values

Many business deals involve payments in the future. For example,
when a car is bought on credit, payments are made over a period
of time. Being paid $1000 in the future is worse than being paid
$1000 today. Therefore, even without considering inflation, if we
are to accept payment in the future, we would expect to be paid
more to compensate for this loss of potential earnings. The
question is “How much more?”.

Definition

The future value, B, of a payment P, is the amount to
which the P would have grown if deposited today in an
interest-bearing bank account.

The present value, P, of a future payment B, is the amount
that would have to be deposited in a bank account today to
produce exactly B in the account at the relevant time in
future.
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Present and future values

Suppose B is the future value of P, and P is the present value of
B.

If interest is compounded annually at a rate r for t years, then

B = P(1 + r)t , or equivalently, P =
B

(1 + r)t
.

If interest is compounded continuously at a rate r for t years,
then

B = Pert , or equivalently, P =
B

ert
= Be−rt .
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Example

Problem 5. You win the lottery and are offered the choice
between $1 million in four yearly installments of $250,000
each, starting now, and a lump-sum payment of $920,000
now. Assuming a 6% interest rate per year, compounded
continuously, and ignoring taxes, which should you choose?

(a) Compare present value of the first payment method.

(b) Compare future value of two payment methods.

(c) Find the answer if the interest is compounded annually at
a rate 5% .
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Compare future values

250, 000 + 250, 000e(−0.06)(1) + 250, 000e(−0.06)(2) +
250, 000e(−0.06)(3)
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Compare future values

250, 000 + 250, 000e−(0.06)(1) + 250, 000e−(0.06)(2) +
250, 000e−(0.06)(3)

250,000+235,441+221,730+208,818=915,989
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Compare present values

920, 000e(0.06)(3) = 1, 101, 440

250, 000e(0.06)(3) + 250, 000e(0.06)(2) + 250, 000e(0.06)(1) +
250, 000
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Compare present values

920, 000e(0.06)(3) = 1, 101, 440

250, 000e(0.06)(3) + 250, 000e(0.06)(2) + 250, 000e(0.06)(1) +
250, 000

299,304+281,874+265,459+250,000=1,096,637
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Compare present values

250, 000 + 250,000
(1.05) + 250,000

(1.05)2
+ 250,000

(1.05)3
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Compounded annually

250, 000 + 250,000
(1.05) + 250,000

(1.05)2
+ 250,000

(1.05)3

250, 000 + 238, 095 + 226, 757 + 215, 959
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