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What derivatives tell us about a function and its graph

@ Plot the graph of the function f(x) = x3 — 9x? — 48x + 52.
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What derivatives tell us about a function and its graph

@ Plot the graph of the function f(x) = x3 — 9x? — 48x + 52.

@ The graph of f/(x) tells us some information of the graph of
f(x).
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What derivatives tell us about a function and its graph

@ Plot the graph of the function f(x) = x3 — 9x? — 48x + 52.

@ The graph of f’(x) tells us some information of the graph of
f(x).
e When is f/(x) > 07 when is f'(x) < 07
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What derivatives tell us about a function and its graph

o Plot the graph of the function f(x) = x> — 9x2 — 48x + 52.

@ The graph of f/(x) tells us some information of the graph of
f(x).

@ When is f/(x) > 07 when is f'(x) > 07?
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Local maxima and minima

Suppose p is a point in the domain of f(x):

e f has a local minimum at p if f(p) is less than or equal to
the values of f for points near p.
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Local maxima and minima

Suppose p is a point in the domain of f(x):
e f has a local minimum at p if f(p) is less than or equal to
the values of f for points near p.

@ f has a local maximum at p if f(p) is greater than or equal
to the values of f for points near p.
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How do we detect a local maximum or minimum

Definition (Critical point)

For any function f, a point p in the domain of f, where f'(p) =0
or f’(x) is undefined is called a critical point of the function. In
addition, the point (p, f(p)) on the graph of f is also called a
critical point (of the graph). A critical value of f is the value,
f(p), of the function at a critical point, p.

@ At a critical point where f'(p) = 0, the tangent line to the
graph at p is horizontal.
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How do we detect a local maximum or minimum

Definition (Critical point)

For any function f, a point p in the domain of f, where f'(p) =0
or f’(x) is undefined is called a critical point of the function. In
addition, the point (p, f(p)) on the graph of f is also called a
critical point (of the graph). A critical value of f is the value,
f(p), of the function at a critical point, p.

@ At a critical point where f'(p) = 0, the tangent line to the
graph at p is horizontal.

e At a critical point where f’(p) is undefined, there is no
horizontal tangent— there is either a vertical tangent or no
tangent at all.

Local Maxima and Minima



X+4x+14 |

Local Maxima and Minima



Example

100

501

-501

-100

— X +x+5

Local Maxima and Minima




> vl

Local Maxima and Minima



How do we detect a local maximum or minimum

@ The critical points divide the domain of f into intervals on
which the sign of the derivative remains the same.
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How do we detect a local maximum or minimum

@ The critical points divide the domain of f into intervals on
which the sign of the derivative remains the same.

@ Therefore, if f is defined on the interval between two
successive critical points, its graph cannot change direction on
that interval, it is either going up or it is going down.
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How do we detect a local maximum or minimum

@ The critical points divide the domain of f into intervals on
which the sign of the derivative remains the same.

@ Therefore, if f is defined on the interval between two
successive critical points, its graph cannot change direction on
that interval, it is either going up or it is going down.

e If a function, continuous on an interval (its domain), has local
maximum or minimum at p, then p is a critical point or an
endpoint of the interval.
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First Derivative Test for Local Maxima and Minima

Suppose p is a critical point of a continuous function f. Then, as
we go from left to right:

o If f changes from decreasing to increasing at p, then f has a
local minimum at p.

fincreasing f decreasi r;g<0
f decreasing fincreasing >0 ;
<0 150 |

p ‘p
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First Derivative Test for Local Maxima and Minima

Suppose p is a critical point of a continuous function f. Then, as
we go from left to right:
o If f changes from decreasing to increasing at p, then f has a
local minimum at p.
@ If f changes from increasing to decreasing at p, then f has a
local maximum at p.

fincreasing f decreasi r;g<0
f decreasing fincreasing >0 ;
<0 150 |

p ‘p
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First Derivative Test for Local Maxima and Minima

Suppose p is a critical point of a continuous function f. Then, as
we go from left to right:
e If f/ changes from negative to positive at p, then f has a local
minimum at p.
o If ' changes from positive to negative at p, then f has a local
maximum at p.

fincreasing f decreasi r;g<0
f decreasing fincreasing >0 ;
<0 150 |

p ‘p
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Second Derivative Test for Local Maxima and Minima

Suppose p is a critical point of a continuous function f, and
f'(p) = 0.
e If f is concave up at p, then f has a local minimum at p.

equivalent to
e If f”(p) > 0, then f has a local minimum at p.

f increasing f decreasi ’;9<0
f decreasing fincreasing >0 ;
f<0 >0 |

p ‘P
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Second Derivative Test for Local Maxima and Minima

Suppose p is a critical point of a continuous function f, and
f'(p) = 0.

e If f is concave up at p, then f has a local minimum at p.

e If f is concave down at p, then f has a local maximum at p.
equivalent to

e If f”(p) > 0, then f has a local minimum at p.

e If f”(p) <0, then f has a local maximum at p.

f increasing f decreasi ’;Q<O
f decreasing fincreasing >0 ;
f<0 >0 |

p ‘P
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(a) Graph a function f with the following properties:
@ f(x) has critical point at x = —2 and x = 3.
e f'(x) is positive on the left of —2 and on the right of 3.
e f’(x) is negative between —2 and 3.

(b) Identify the critical points as local maxima, local maxima, or
neither.
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Find the local maxima and local minima of
f(x) = x3 — 6x% + 9x + 40.
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If a and b are nonzero constants, find the domain and all critical
points of
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The value of an investment at tiem t is given by S(t). The rate of
change, S'(t), of the value of the investment is shown in the
figure.

@ What is the critical point of 5(¢)?

S()
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The value of an investment at tiem t is given by S(t). The rate of
change, S'(t), of the value of the investment is shown in the
figure.
@ What is the critical point of 5(¢)?
@ ldentify each critical point as a local maximum, a local
minimum, or neither.

S(1)
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The value of an investment at tiem t is given by S(t). The rate of

change, S'(t), of the value of the investment is shown in the
figure.

@ What is the critical point of 5(¢)?

@ ldentify each critical point as a local maximum, a local
minimum, or neither.

© Explain the financial significance of each of the critical point.

S()
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Let g(x) = x — ke*, where k is a constant. For what values of k
does the function g have a critical point? a local maximum? a
local minimum?
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X — exp(x)
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X + exp(x)
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