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K Introduction \

The field of exact enumeration of tilings dates back to the early 1900’'s when McMahon proved his
theorem on the number of lozenge (rhombus) tilings of a hexagon with sides a, b, ¢, a, b, c on the
triangular lattice. A large body of related work emerged in the last couple of decades, centered on
families of lattice regions whose tilings are enumerated by simple product formulas.

-

In 1999, James Propp listed 20 open problems on the enumeration of tilings (updated with 12
addition open problems in [6]). Most of those problems have been proved in the meanwhile, but

some are still open. We solve and generalize one of these open problems (Problem 16). Our method
also provides a new proof and a generalization for a related result of Douglas [1].

TERMINOLOGY
*» Atileis the union of two elementary regions that share an edge.

A tiling of a region is a way to cover it by tiles so that there are no gaps or overlaps.
** Denote by T(R) the number of tilings of region R.
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Figure 1. The region H; 3 ; and a tiling
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Figure 3. The 8 x 8 chess board and a tiling
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Figure 4. A tiling of 26 x 26 chess board

(Elkies-Kuperberg-Larsen-Propp 1991. (Aztec Diamond Theorem)

- T(ADn) — 2n(n+1)/2
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Figure 5. The Aztec diamond AD; and a tiling " . tp|e |
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Figure 7. Douglas’ regions D,, D, and D;; and five types of their tiles
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every third diagonal drawn in.

[Problem 16. Find a formula for the number of tilings of a quasi-hexagonal region on the square lattice with
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Figure 8. The quasi-hexagonal region of sides 3,2,2,3,2,2; its dual graph and seven types of tiles

meorem 1(T. L)

a = |AF|, g=|BE|
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the top part

k in the bottom part

T(Ha(dl) ery dkl dll) ery d’l)) — 2C+C,_h(2q_h+1)T(Hh,q_h,h)

C = the number of black squares and black up-pointing triangles in the top part
C’=the number of white squares and white down-pointing triangles in the bottom part
h = the number of rows of black squares + the number of rows of black up-pointing triangles in

= the number of rows of white squares + the number of rows of white down-pointing triangles
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Figure 9. The region H¢(4,4,3; 5,5)

Figure 10. The region D,(4,2,5,4)
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Theorem 2 (T. L.) T(D,(dy, ..., dy)) = 2¢-hh+1D)/2

» a=|AD|
» C=the number of black squares and black up-pointing triangles

\> h=|BC|=the number of rows of black squares + the number of rows of black up-pointing triangles

/Definitions

elementary regions precisely when they share an edge.

\ incident to precisely one edge in the collection

# The dual graph G of R is the graph whose vertices are the elementary regions, and whose edges connect two

# A perfect matching (or dimer covering) of a graph G is a collection of edges such that each vertex of G is

~
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Method

# The number of tilings of the region R is equal to the number of perfect
matchings of the dual graph G; denote the latter by M(G).

~

# Use the subgraph replacement method: Replace a part of the dual graph by a
new graph so that its number of perfect matchings changes by a simple factor.

# To prove Theorem 1 we apply repeatedly the replacement method until we get

the dual graph of a hexagon, and then apply McMahon’s formula.

# To prove Theorem 2 we apply repeatedly the replacement method until we get

theorem.

\the dual graph of an Aztec diamond, and then apply the Aztec diamond
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Figure 11. The equivalence between tilings and perfect matchings
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Figure 13. The subgraph replacements used in the proof of Theorem 2
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