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Introduction

There are two main types of tilings: domino tilings and
lozenge tilings.

They very are separated; there were not significant
connections.

Our main result is a such connection.
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Lozenge tilings of a hexagon
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A lozenge (or unit rhombus) is the union of two adjacent unit
equilateral triangles.

A lozenge tiling of a region R on the triangular lattice is a
covering of R by lozenges so that there are no gaps or
overlaps.
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Semi-regular hexagons

Theorem (MacMahon ∼ 1900)

T(Hex(a, b, c)) =
H(a)H(b)H(c)H(a + b + c)

H(a + b)H(b + c)H(c + a)
,

where the “hyperfactorial” is defined as

H(n) := 0! · 1! · 2! . . . (n − 1)!.
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Lozenge tilings and plane partition
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MacMahon’s q-Theorem

Theorem (MacMahon’s q-Theorem)∑
π

qvol(π) =
Hq(a)Hq(b)Hq(c)Hq(a + b + c)

Hq(a + b)Hq(b + c)Hq(c + a)
,

where the sum is taken over all monotonic stacks of unit cubes
(plane partitions) π fitting in an a× b × c box.

Definition:

q-integer [n]q := 1 + q + q2 + . . .+ qn−1

q-factorial [n]q! = [1]q[2]q . . . [n]q,

q-hyperfactorial Hq(n) = [0]q![1]q! . . . [n − 1]q!.
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Domino Tilings

Study of domino tilings came from statistical mechanics with the
work of Kasteleyn, and Temperley and Fisher in 1961.

Theorem (Elkies, Kuperberg, Larsen and Propp 1992)

The Aztec diamond of order n has 2n(n+1)/2 domino tilings.

Figure: The Aztec diamond of order 5 and one of its tilings.
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Rank of a domino tiling

(a)

(b) (c) (d) (e)

The all-horizontal domino T0 has rank 0.

The rank r(T ) of a tiling T is the smallest number of
elementary moves to obtain the tiling T from T0.
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The Weighted Aztec Diamond Theorem

Theorem (Weighted Aztec Diamond Theorem)

For any positive integer n and indeterminates t and q

∑
T

tv(T )qr(T ) =
n−1∏
k=0

(1 + tq2k+1)n−k , (1)

where v(T ) is half number of vertical dominoes in T .

Figure: The Aztec diamond of order 5 and one of its tilings.Tri Lai Enumeration of domino tilings of a double Aztec rectangle



The Aztec Rectangle
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The Double Aztec Rectangle
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m1,n1,k

Tri Lai Enumeration of domino tilings of a double Aztec rectangle



Define the rank of a tiling

In general, DRm2,n2
m1,n1,k

does not have all-horizontal domino tiling.
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Main Theorem

Theorem (L. 2016)

Assume that m1 ≤ n1, m2 ≤ n2, k ≤ min(m2, n2 − 1), and
n1 −m1 = n2 −m2. Then∑
T∈T (DRm2,n2

m1,n1,k
)

tv(T )qr(T ) = t(m1+1
2 )+(m2+1

2 )+(n1−m1)(m1+k)/2qE

×
m1−1∏
i=0

(1 + t−1q2i+1)m1−i
m2−1∏
i=0

(1 + t−1q−2i−1)m2−i

×Pq2(n1 −m1,m2 − k + 1,m1 + k), (2)

where

Pq(a, b, c) =
Hq(a)Hq(b)Hq(c)Hq(a + b + c)

Hq(a + b)Hq(b + c)Hq(c + a)
.
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A consequence

Corollary

Assume that m1 ≤ n1, m2 ≤ n2, k ≤ min(m2, n2 − 1), and
n1 −m1 = n2 −m2. Then

T
(
DRm2,n2

m1,n1,k

)
= 2(m1+1

2 )+(m2+1
2 )

×T (Hex(n1 −m1,m2 − k + 1,m1 + k)) .

Remark: The conditions m1 ≤ n1, m2 ≤ n2, k ≤ min(m2, n2 − 1),
and n1 −m1 = n2 −m2 to make sure the region has tilings.
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A bijection between tilings and perfect matchings

Figure: Bijection between tilings of the Aztec diamond of order 5 and
perfect matchings of its dual graph.

The dual graph of a region R is the graph whose vertices are
the “cells” in R and whose edges connect precisely two
adjacent cells.

A perfect matching of a graph G is a collection of disjoint
edges covering all vertices of G .
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Idea of the proof

Idea: “Transform” the dual graph of a double Aztec rectangle
into the dual graph of a hexagon.
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Subgraph replacement

M(G ) = 2# rows of diamonds in KM(G ′)

G-KG-K

K’K
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Compound replacement

(d)(c)(b)(a)

Figure: The compound replacement
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Applying the compound replacement
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Applying the subgraph replacement

T
(
DRm2,n2

m1,n1,k

)
= 2(m1+1

2 )+(m2+1
2 )

×T (Hex(n1 −m1,m2 − k + 1,m1 + k)) .
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The End

Thank You!
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