
Matrices 1

1. An n × m matrix A is a rectangular array of numbers with n rows and m columns. By
A = (aij) we mean that aij is the entry in the ith row and the jth column. For example,

A =
[

1 2 −2
0 −1 4

]
,

is a 2× 3 matrix. We denote by Rn×m the class of n×m matrices with real entries.

2. An n × 1 matrix is called a column vector, and a 1 ×m matrix, a row vector. An n × n
matrix is called square. An n× n matrix A = (aij) is called diagonal if aij = 0 for i 6= j.
The main diagonal of A is the set of elements aii, i = 1, . . . , n.

3. The transpose of the n ×m matrix A = (aij) is the m × n matrix AT = (aji). Thus you
get AT from A by transposing the rows and the columns. For example, thr tranpose of

A =
[

1 2 −2
0 −1 4

]
,

is

AT =

 1 0
2 −1
−2 4

 ,

and the transpose of

x =

 1
−2
3

 , (1)

is
xT = [ 1 −2 3 ] . (2)

Note that
(
AT

)T = A.

4. For reasons we’ll discuss later, we denote points in Rn by column vectors. For example,
we write

x =
[

2
1

]
, (3)

instead of the (2, 1) you might be used to. To save space while observing the column vector
convention, some authors will write x as [ 2 1 ]T or (2, 1)T .

5. Matrix Addition: If A = (aij) and B = (bij) are n×m matrices, then A + B is the n×m
matrix with ijth entry aij + bij .



6. Scalar Multiplication: If A = (aij) is an n × m matrix and c is a scalar, then cA is the
n×m matrix with ijth entry caij .

7. We usually write −A instead of −1A. By A−B we mean A + (−1)B.

8. Matrix Multiplication: If A = (aij) is n×m and B = (bij) is m× k, then we can form the
matrix product AB. To be precise, AB is the n×k matrix whose ijth entry is

∑m
l=1 ailblj .

In other words, the ijth entry of AB is the dot product of the ith row of A with the jth
column of B.

9. Note that matrix multiplication is not commutative. If A is n×m and B is m× k, where
k 6= n, then AB is defined, but BA is not. Even if k = n, it is not generally true that
AB = BA.

10. Let A, B and C be matrices and k a scalar. Then,

A + (B + C) = (A + B) + C, (4)

A(B + C) = (A + B)C, (5)

(AB)C = A(BC), (6)

and

k(AB) = (kA)B = A(kB), (7)

whenever the operations are defined.

11. The n × n identity is the matrix I ∈ Rn×n, with 1’s one the main diagonal and 0’s
elsewhere:

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 (8)

Let I be the n× n identity. If A is n×m, then IA = A. If A is m× n, then AI = A. In
particular, if A is n× n and x is n× 1, then

AI = IA = A, (9)

and

Ix = x. (10)



12. Consider the system of n equations in m unknowns:

a11x1 + a12x2+ · · ·+ a1mxm = b1

a21x1 + a22x2+ · · ·+ a2mxm = b2

...
an1x1 + an2x2+ · · ·+ anmxm = bn

(11)

Let A = (aij), x = [x1 · · ·xm ]T and b = [ b1 · · · bn ]T . Then the above system of equations
can be written in matrix form as

Ax = b.

When b = 0 (that is, the zero vector in Rn), the system is called homogeneous. In these
notes, we’ll only be concerned with the case of m = n.

13. Let I be the n × n identity. An matrix A ∈ Rn×n, is called invertible or nonsinuglar if
there is a matrix A−1 such that

A−1A = I. (12)

The matrix A−1 is called the inverse of A. Note that A−1 must also be n × n. If A has
no inverse, it is called singular.

14. If A ∈ Rn×n, is nonsingular, then
(
A−1

)−1 = A, and AA−1 = I. If B ∈ Rn×n, is also
nonsingular, then AB is nonsingular and (AB)−1 = B−1A−1

15. Proposition: Consider the n-dimensional system

Ax = b. (13)

a. If A is invertible, then (13) has the unique solution x = A−1b.

b. It follows from (a), that if A is invertible and b = 0, then (13) has the unique solution
x = 0.

c. If A is singular and b 6= 0, then (13) has either no solution or infinitely many solutions.

d. If A is singular and b = 0, then (13) has infinitely many solutions.

16. Proposition: A ∈ Rn×n, is invertible if and only if det A 6= 0.

17. The null space or kernel of A ∈ Rn×m, is

N (A) = {x ∈ Rm | Ax = 0 ∈ Rn}.

If m = n, then by the previous two paragraphs,

N (A) = {0} ⇐⇒ det A 6= 0 ⇐⇒ A is nonsingular. (14)



18. Vectors v1, . . . , vm are linearly indepedent or simply independent if no one of them is a
linear combination of the others. It isn’t hard to show that v1, . . . , vm are independent if

c1v1 + · · ·+ cmvm = 0,

implies that
c1 = c2 = · · · = cm = 0.

In other words, the vi are linearly independent if the only linear combination of the vi that
equals zero has coefficients that are all zero.

19. Proposition: For j = 1, . . . , n, let

aj =

 a1j

...
αnj

 .

Let A be the n×n matrix with columns a1, . . . , an: A = (aij). Then det A 6= 0 if and only
if the column vectors a1, . . . , an are linearly independent. Thus, for a square matrix A,

The columns of A are independent ⇐⇒ det A 6= 0 ⇐⇒ A is nonsingular. (15)

20. Let A be an n×m matrix. If x is in Rm, then Ax is in Rn. Thus,

A : Rm 7→ Rn.

Moreover,
A(x + y) = Ax + Ay,

and
A(cx) = cAx.

You can thus think of an n ×m matrix A as a linear operator (or mapping, or transfor-
mation) taking Rm to Rn. If B is k × n, then BA takes x ∈ Rm to Ax ∈ Rn and then to
BAx ∈ Rk. In a nutshell,

BA : Rm 7→ Rk, linearly.

You can thus think of matrix multiplication as composition of linear operators.


