
Vector Fields and Line Integrals

1. Let C be a curve traced by the vector-valued function

~r (t) = 〈x(t), y(t), z(t)〉, (1)

for a ≤ t ≤ b. The arclength differential on C is

ds =
√

ẋ(t)2 + ẏ(t)2 + ż(t)2 dt. (2)

As we saw in class, the line integral of the function g : R3 7→ R over C can be expressed
as integral with respect to t:∫

C

g(x, y, z) ds =
∫ b

a

g(x(t), y(t), z(t))
√

ẋ(t)2 + ẏ(t)2 + ż(t)2 dt. (3)

2. Let ~F : R3 7→ V3 by
~F = 〈M,N,P 〉. (4)

We call ~F conservative if there is a function f : R3 7→ R such that

~F = ∇f.

The function f is a potential for ~F . Note that if f is a potential for ~F , then for any
constant c, f + c is also a potential for ~F .

3. Let
~r = 〈x, y, z〉. (5)

The inverse-square field
~F (x, y, z) =

k

‖~r ‖3
~r , (6)

is conservative in any region (not containing the origin) with potential

f(x, y, z) = − k

‖~r ‖
. (7)

4. The line integral of vector field: Let ~F : R3 7→ V3 by

~F = 〈M,N,P 〉. (8)

We set
~r = 〈x, y, z〉, (9)



so that
d~r = 〈dx, dy, dz〉. (10)

We may thus write the line integral of ~F over the oriented curve C as∫
C

~F · d~r =
∫

C

Mdx + Ndy + Pdz. (11)

If ~r = ~r (t) is given by (1), then

~F = ~F (x(t), y(t), z(t)), (12)

and
d~r = ~r ′(t) dt. (13)

We can thus express the line integral of ~F over C as an integral with respect to t:∫
C

~F · d~r =
∫ b

a

~F (x(t), y(t), z(t)) · ~r ′(t) dt. (14)

When we defined the line integral of a function, we were only concerned with the length
ds of an infinitesimal section of C. When we defined the line integral of a vector field,
we had to consider both the length and direction of the infinitesimal displacement d~r
along C. For this reason, the curve C in (11) and (14) must be oriented. If −C is the
same curve with the opposite orientation, then∫

−C

~F · d~r = −
∫

C

~F · d~r . (15)

5. The curl of a vector field: The curl of ~F = 〈M,N,P 〉 is

curl ~F = ∇× ~F =

∣∣∣∣∣∣∣
~ı ~ ~k

∂x ∂y ∂z

M N P

∣∣∣∣∣∣∣ . (16)

In the case of a two-dimensionsal field

~F (x, y) = 〈M(x, y), N(x, y)〉,

(16) reduces to
curl ~F = (Nx −My)~k. (17)

Remember that the curl of a vector field is another vector field.



6. Physical interpretation of the curl: Let Cε be a circle of radius ε centered at (x, y, z),
lying in the plane orthogonal to the unit vector ~n. The circulation of ~F around Cε is
the line integral of ~F over Cε. As we showed in class,

curl ~F (x, y, z) · ~n = lim
ε→0

1
πε2

∮
Cε

~F · d~r . (18)

Thus curl ~F (x, y, z) is the infinitesimal circulation of ~F , per unit area, abut (x, y, z),
normal to ~n. (You don’t have to use concentric circles to define the curl. Any family
of piecewise smooth, closed curves normal to ~n that can be shrunk to (x, y, z) will do.)

7. Stokes’ Theorem: Let S be an oriented surface with unit normal ~n, bounded by the
closed curve ∂S, oriented by the right-hand rule. Let ~F be a C1 vector field. Then∮

∂S
~F · d~r =

∫∫
S

curl ~F · ~n dS. (19)

Think of S as the union of very small, almost flat, roughly rectangular patches. Let
(x, y, z) lie in one such patch. Let ~n be the unit normal to S at that point. Since the
patch is nearly flat, we can take ~n to be the unit normal to the entire patch. By the
interpretation of the curl given in paragraph (6), the circulation about (x, y, z) normal
to ~n is

curl ~F (x, y, z) · ~n dS. (20)

We saw in class that when we “add up” (i.e. integrate) this quantity over S, the circu-
lation over an internal patch boundary is cancelled by circulation about the adjacent
patches. This leaves only the circulation about the boundary ∂S. Thus the conclusion
(19).

8. Green’s Theorem: Let ~F (x, y) = 〈M(x, y), N(x, y)〉 be a two-dimensional, C1 vector
field. Let S be a region in the plane bounded by the closed curve ∂S. We orient S by
taking ~n = ~k, and ∂S by the counterclockwise direction. In two dimensions,

(curl ~F ) · ~n = (Nx −My)~k · ~k = Nx −My, (21)

dS = dA, (22)

and
~F · d~r = Mdx + Ndy. (23)

Thus, Stokes’ theorem becomes∮
∂S

~F · d~r ≡
∮

∂S
Mdx + Ndy =

∫∫
S
(Nx −My) dA. (24)

This is the conclusion of Green’s theorem. Bear in mind that it is just the two-
dimesional version of Stokes’ theorem.



9. Let the vector field ~F be C1 on some simply connected region D. The following are
equivalent:

a. ~F is conservative on D.

b. ∇× ~F = ~0 on D. (The vector field ~F is irrotational on D.)

c.
∮

C
~F · d~r = 0 for every closed path C in D.

d.
∫

C
~F · d~r is path-independent on D.

10. If ~F is conservative with potential f , then∫
C

~F · d~r = f(B)− f(A), (25)

where A and B are respectively the initial and terminal points of C

11. General advice on doing line integrals of vector fields: Let C be a curve lying in a
simply connected region on which ~F is C1. Suppose that you are to evaluate

I =
∫

C

~F · d~r . (26)

a. Compute curl ~F .

b. If curl ~F = ~0 and C is closed, then by (25), I = 0.

c. If curl ~F = ~0 and C is not closed, find a potential f and use (25).

d. If curl ~F 6= ~0, and C is closed and lies in the xy-plane, try Green’s theorem. The
double integral (24) might be easier to evaluate than your original line integral. If C
does not lie in the xy-plane, you might be able to use Stokes’ theorem to simplify your
calculation, but this is doubtful. The surface integral on the right-hand side of (19) is
usually more complicated than the line integral on the left.

e. If all else fails, parametrize C and then use (14).


