

The Laplace Transform 1

1. The *Laplace transform* of a function $f(t)$ is

$$\mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) dt, \quad (1)$$

defined for those values of s at which the integral converges. For example, the Laplace transform of $f(t) = e^{at}$ is

$$\begin{aligned} \mathcal{L}\{e^{at}\} &= \int_0^\infty e^{-st} e^{at} dt \\ &= \int_0^\infty e^{-(s-a)t} dt \\ &= (s-a)^{-1}, \quad \text{for } s > a. \end{aligned} \quad (2)$$

2. Note that the Laplace transform of $f(t)$ is a function of s . Hence the transform is sometimes denoted $\mathcal{L}\{f(t)\}(s)$, $\mathcal{L}\{f\}(s)$, or simply $F(s)$.

3. Example: The Laplace transform of $f(t) = 1$ is

$$\begin{aligned} F(s) &= \int_0^\infty e^{-st} dt \\ &= s^{-1}, \quad \text{for } s > 0. \end{aligned} \quad (3)$$

You can integrate by parts obtain the Laplace transform of $f(t) = t$:

$$\begin{aligned} \mathcal{L}\{t\} &= \int_0^\infty t e^{-st} dt \\ &= s^{-2}, \quad \text{for } s > 0. \end{aligned} \quad (4)$$

Integrate by parts n times to get

$$\begin{aligned} \mathcal{L}\{t^n\} &= \int_0^\infty t^n e^{-st} dt \\ &= \frac{n!}{s^{n+1}}, \quad \text{for } s > 0, \text{ and } n = 0, 1, 2, \dots \end{aligned} \quad (5)$$

4. The Gamma function is

$$\Gamma(x) = \int_0^\infty z^{x-1} e^{-z} dz, \quad \text{for } x > 0. \quad (6)$$

We showed in class that

$$\Gamma(x+1) = x\Gamma(x). \quad (7)$$

Thus $\Gamma(x)$ is the continuous extension of the factorial. We also showed that for $a > -1$,

$$\mathcal{L}\{\Gamma(t)\} = \frac{\Gamma(a+1)}{s^{a+1}}, \quad \text{for } s > 0. \quad (8)$$

As $\Gamma(x)$ generalizes the factorial, the Laplace transform (8) generalizes (5).

5. Example: The Laplace transforms of $\sin \beta t$ and $\cos \beta t$ are

$$\begin{aligned} \mathcal{L}\{\sin \beta t\} &= \int_0^\infty e^{-st} \sin \beta t \, dt \\ &= \frac{\beta}{s^2 + \beta^2}, \end{aligned} \quad (9)$$

and

$$\begin{aligned} \mathcal{L}\{\cos \beta t\} &= \int_0^\infty e^{-st} \cos \beta t \, dt \\ &= \frac{s}{s^2 + \beta^2}, \end{aligned} \quad (10)$$

both for $s > 0$.

6. Proposition: The Laplace transform is a linear operator, that is, for functions $f(t)$ and $g(t)$ and any constant c ,

$$\mathcal{L}\{f(t) + g(t)\} = \mathcal{L}\{f(t)\} + \mathcal{L}\{g(t)\}, \quad (11)$$

and

$$\mathcal{L}\{cf(t)\} = c\mathcal{L}\{f(t)\}. \quad (12)$$

7. Example: From (11), (12) and (2) we get

$$\mathcal{L}\{\sinh \beta t\} = \frac{\beta}{s^2 - \beta^2}, \quad (13)$$

and

$$\mathcal{L}\{\cosh \beta t\} = \frac{s}{s^2 - \beta^2}, \quad (14)$$

both for $s > |\beta|$.

8. Example: The Laplace transform of $x(t) = 2t - e^{-3t} + 4 \cos \pi t$ is

$$\begin{aligned}
X(s) &= \mathcal{L}\{2t - e^{-3t} + 4 \cos \pi t\} \\
&= 2\mathcal{L}\{t\} - \mathcal{L}\{e^{-3t}\} + 4\mathcal{L}\{\cos \pi t\} \\
&= \frac{2}{s^2} - \frac{1}{s+3} + \frac{4s}{s^2 + \pi^2}.
\end{aligned} \tag{15}$$

9. When applying the Laplace transform to a function $f(t)$, we will assume that f is of *exponential order* over $[0, \infty)$. This means that for some t_0 , and constants M and α ,

$$|f(t)| \leq M e^{\alpha t}, \tag{16}$$

for all $t \geq t_0$. In class we proved the following result.

10. Proposition: If $f(t)$ satisfies (16) then its Laplace transform $F(s)$ exists for $s > \alpha$ and

$$\lim_{s \rightarrow \infty} F(s) = 0. \tag{17}$$

11. Note: Unless otherwise stated, we'll assume any function to which we apply the Laplace transform to be of exponential order. We conclude this set of notes with a few important properties of the Laplace transform. The derivations, done in class, are quite simple.

12. The shift property: Let $\mathcal{L}\{f(t)\} = F(s)$. Then

$$\mathcal{L}\{e^{at} f(t)\} = F(s-a). \tag{18}$$

So, for example,

$$\mathcal{L}\{e^{-t} \cos 2t\} = \frac{s+1}{(s+1)^2 + 4}.$$

13. The switching property: Let $H(t)$ be the Heaviside function:

$$H(t) = \begin{cases} 0 & \text{for } t < 0, \\ 1 & \text{for } t \geq 0, \end{cases}$$

and $F(s)$ be the Laplace transform of $f(t)$. Then

$$\mathcal{L}\{H(t-a)f(t-a)\} = e^{-as} F(s). \tag{19}$$

Thus,

$$\mathcal{L}\{H(t-3)(t-3)^5\} = \frac{5! e^{-3s}}{s^6}.$$

And,

$$\begin{aligned} \mathcal{L}\{H(t-3)t^2\} &= \mathcal{L}\{H(t-3)(t-3+3)^2\} \\ &= \mathcal{L}\{H(t-3)[(t-3)^2 + 6(t-3) + 9]\} \\ &= e^{-3s} \left[\frac{2}{s^3} + \frac{6}{s^2} + \frac{9}{s} \right]. \end{aligned} \quad (20)$$

Note: Some authors write $h_a(t)$ or $u_a(t)$ instead of $H(t-a)$.

14. If $F(s)$ is the Laplace transform of $f(t)$, and n is a nonnegative integer, then

$$\mathcal{L}\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} F(s). \quad (21)$$

Thus,

$$\mathcal{L}\{t \sin 2t\} = \frac{4s}{(s^2 + 4)^2}.$$

15. Let $F(s) = \mathcal{L}\{f(t)\}$. Then

$$\mathcal{L}\{f'(t)\} = -f(0) + sF(s), \quad (22)$$

and

$$\mathcal{L}\{f''(t)\} = -sf(0) - f'(0) + s^2 F(s). \quad (23)$$

16. The *convolution* of functions $f(t)$ and $g(t)$ is

$$(f * g)(t) = \int_0^t f(t-u)g(u) du. \quad (24)$$

As we showed in class, convolution is commutative, i.e.

$$(f * g)(t) = \int_0^t f(t-u)g(u) du = \int_0^t f(u)g(t-u) du = (g * f)(t). \quad (25)$$

17. Proposition: If $F(s)$ and $G(s)$ are the Laplace transforms of $f(t)$ and $g(t)$ respectively, then

$$\mathcal{L}\{(f * g)(t)\} = F(s)G(s). \quad (26)$$

18. We can use the above proposition to compute the Laplace transform of $\int_0^t f(u) du$. We can write this integral as $(f * 1)(t)$ and then apply (26):

$$\mathcal{L}\left\{\int_0^t f(u) du\right\} = \mathcal{L}\{(f * 1)(t)\} = \frac{F(s)}{s}. \quad (27)$$