The Laplace Transform 1

1. The Laplace transform of a function f(t) is

L) = / T etp ) dt, (1)

defined for those values of s at which the integral converges. For example, the Laplace
transform of f(t) = e is

ﬁ {eat} :/ e—steat dt
0

:/ e~ (5=t gy
0

=(s—a)"!, fors>a. (2)

2. Note that the Laplace transform of f(¢) is a function of s. Hence the transform is sometimes

denoted L{f(t)}(s), L{f}(s), or simply F(s).

3. Example: The Laplace transform of f(t) =1 is

=51 fors>0. (3)

You can integrate by parts obtain the Laplace transform of f(t) = ¢:
oo
L{t} = / te st dt
0
=52, fors>0. (4)
Integrate by parts n times to get
o0
L{t"} = / t"e St dt
0

n!
= Sl for s >0,and n=0,1,2,... (5)

4. The Gamma function is

I'(z) = / 2" le™*dz, for x> 0. (6)
0



We showed in class that
Iz +1) =al'(x). (7)

Thus I'(z) is the continuous extension of the factorial. We also showed that for a > —1,
r 1
L{T()} = % for s > 0. (8)

As I'(z) generalizes the factorial, the Laplace transform (8) generalizes (5).

. Example: The Laplace transforms of sin ¢ and cos 5t are

E{Sinﬁt}:/ e~ %'sin Bt dt
0

- )
and
L{cos Bt} = /0 h e 5! cos Bt dt
= o (10)

both for s > 0.

. Proposition: The Laplace transform is a linear operator, that is, for functions f(¢) and
g(t) and any constant c,

L{F(@) + 9@} = L{f(B)} + L{g(1)}, (11)

and

L{cf(t)} = cL{f(1)}- (12)

. Example: From (11), (12) and (2) we get

g
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L{sinh 5t} = (13)

and

L{cosh ft} = (14)

S
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both for s > |3|.
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Example: The Laplace transform of z(t) = 2t — =3 + 4 cos it is

X (s) = £{2t — e 3" + dcos it}
=2L{t} — L{e 3"} + 4L{cos it}
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. When applying the Laplace transform to a function f(¢), we will assume that f is of

exponential order over [0,00). This means that for some t(, and constants M and «,
[f(1)] < Me™, (16)

for all £ > ty. In class we proved the following result.

Proposition: If f(t) satisfies (16) then its Laplace transform F'(s) exists for s > a and
lim F(s) =0. (17)
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Note: Unless otherwise stated, we’ll assume any function to which we apply the Laplace
transform to be of exponential order. We conclude this set of notes with a few important
properties of the Laplace transform. The derivations, done in class, are quite simple.

The shift property: Let £L{f(t)} = F(s). Then

L{ef(t)} = F(s —a). (18)
So, for example,

s+1

—t _
L{e " cos2t} = GriETd

The switching property: Let H(t) be the Heaviside function:

0 fort <0,
H(t)_{l for t > 0,

and F'(s) be the Laplace transform of f(¢). Then

L{H(t—a)f(t—a)} =e *F(s). (19)
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Thus,
5le™3s

56

L{H(t—3)(t—3)°} =

And,
L{H(t —3)t*} = L{H(t — 3)(t — 3+ 3)?}
= L{H(t-3)[(t - 3)* +6(t —3) + 9]}
9} (20)

Note: Some authors write h,(t) or u,(t) instead of H(t —

= e 38 [ —|——+

If F(s) is the Laplace transform of f(¢), and n is a nonnegative integer, then
d’rL

LU f()} = (=1)" o2 F(s). (21)
Thus, A
L{tsin2t} = i
Let F(s) = L{f(t)}. Then
L{f(t)} = —£(0) + sF(s), (22)
and
LU (1)} = —sf(0) = £'(0) + s*F (s). (23)

The convolution of functions f(t) and g(t

/ft—u (24)

As we showed in class, convolution is commutative, i.e.

t
:/f(t—u du—/f gt —u)du= (g f)(t). (25)
0
Proposition: If F(s) and G(s) are the Laplace transforms of f(t) and g(t) respectively,
then
LL(f = 9)(8)} = F(s)G(s). (26)
We can use the above proposition to compute the Laplace transform of fo u) du. We

can write this integral as (f % 1)(¢) and then apply (26):

c{f ) auf = (7 e ey = . (21)
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