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1. The Laplace transform of a function f(t) is

L{f(t)} =

∫ ∞
0

e−stf(t) dt, (1)

defined for those values of s at which the integral converges. For example, the Laplace
transform of f(t) = eat is

L
{
eat
}

=

∫ ∞
0

e−steat dt

=

∫ ∞
0

e−(s−a)t dt

= (s− a)−1, for s > a. (2)

2. Note that the Laplace transform of f(t) is a function of s. Hence the transform is sometimes
denoted L{f(t)}(s), L{f}(s), or simply F (s).

3. Example: The Laplace transform of f(t) = 1 is

F (s) =

∫ ∞
0

e−st dt

= s−1, for s > 0. (3)

You can integrate by parts obtain the Laplace transform of f(t) = t:

L{t} =

∫ ∞
0

te−st dt

= s−2, for s > 0. (4)

Integrate by parts n times to get

L{tn} =

∫ ∞
0

tne−st dt

=
n!

sn+1
, for s > 0, and n = 0, 1, 2, . . . (5)

4. The Gamma function is

Γ(x) =

∫ ∞
0

zx−1e−z dz, for x > 0. (6)



We showed in class that
Γ(x+ 1) = xΓ(x). (7)

Thus Γ(x) is the continuous extension of the factorial. We also showed that for a > −1,

L{Γ(t)} =
Γ(a+ 1)

sa+1
, for s > 0. (8)

As Γ(x) generalizes the factorial, the Laplace transform (8) generalizes (5).

5. Example: The Laplace transforms of sinβt and cosβt are

L{sinβt} =

∫ ∞
0

e−st sinβt dt

=
β

s2 + β2
, (9)

and

L{cosβt} =

∫ ∞
0

e−st cosβt dt

=
s

s2 + β2
, (10)

both for s > 0.

6. Proposition: The Laplace transform is a linear operator, that is, for functions f(t) and
g(t) and any constant c,

L{f(t) + g(t)} = L{f(t)}+ L{g(t)}, (11)

and
L{cf(t)} = cL{f(t)}. (12)

7. Example: From (11), (12) and (2) we get

L{sinhβt} =
β

s2 − β2
, (13)

and
L{coshβt} =

s

s2 − β2
, (14)

both for s > |β|.



8. Example: The Laplace transform of x(t) = 2t− e−3t + 4 cosπt is

X(s) = L{2t− e−3t + 4 cosπt}

= 2L{t} − L{e−3t}+ 4L{cosπt}

=
2

s2
− 1

s+ 3
+

4s

s2 + π2
. (15)

9. When applying the Laplace transform to a function f(t), we will assume that f is of
exponential order over [0,∞). This means that for some t0, and constants M and α,

|f(t)| ≤Meαt, (16)

for all t ≥ t0. In class we proved the following result.

10. Proposition: If f(t) satisfies (16) then its Laplace transform F (s) exists for s > α and

lim
s→∞

F (s) = 0. (17)

11. Note: Unless otherwise stated, we’ll assume any function to which we apply the Laplace
transform to be of exponential order. We conclude this set of notes with a few important
properties of the Laplace transform. The derivations, done in class, are quite simple.

12. The shift property: Let L{f(t)} = F (s). Then

L{eatf(t)} = F (s− a). (18)

So, for example,

L{e−t cos 2t} =
s+ 1

(s+ 1)2 + 4
.

13. The switching property: Let H(t) be the Heaviside function:

H(t) =

{
0 for t < 0,
1 for t ≥ 0,

and F (s) be the Laplace transform of f(t). Then

L{H(t− a)f(t− a)} = e−asF (s). (19)



Thus,

L{H(t− 3)(t− 3)5} =
5! e−3s

s6
.

And,

L{H(t− 3)t2} = L{H(t− 3)(t− 3 + 3)2}

= L
{
H(t− 3)[(t− 3)2 + 6(t− 3) + 9]

}
= e−3s

[
2

s3
+

6

s2
+

9

s

]
. (20)

Note: Some authors write ha(t) or ua(t) instead of H(t− a).

14. If F (s) is the Laplace transform of f(t), and n is a nonnegative integer, then

L{tnf(t)} = (−1)n
dn

dsn
F (s). (21)

Thus,

L{t sin 2t} =
4s

(s2 + 4)2
.

15. Let F (s) = L{f(t)}. Then
L{f ′(t)} = −f(0) + sF (s), (22)

and
L{f ′′(t)} = −sf(0)− f ′(0) + s2F (s). (23)

16. The convolution of functions f(t) and g(t) is

(f ∗ g)(t) =

∫ t

0

f(t− u)g(u) du. (24)

As we showed in class, convolution is commutative, i.e.

(f ∗ g)(t) =

∫ t

0

f(t− u)g(u) du =

∫ t

0

f(u)g(t− u) du = (g ∗ f)(t). (25)

17. Proposition: If F (s) and G(s) are the Laplace transforms of f(t) and g(t) respectively,
then

L{(f ∗ g)(t)} = F (s)G(s). (26)

18. We can use the above proposition to compute the Laplace transform of
∫ t
0
f(u) du. We

can write this integral as (f ∗ 1)(t) and then apply (26):

L
{∫ t

0

f(u) du

}
= L{(f ∗ 1)(t)} =

F (s)

s
. (27)


