WKB (Wentzel-Kramers-Brillouin) Approximation

1. We apply the WKB method to approximate solutions to equations of the form

2y +q(x)y=0, e<1, (1)
Yy’ + q(ax)zy =0, ex1, (2)

and
—y" +q(x)y = Np(x)y, A> 1 (3)

2. Example: The wave function ¥(x,t) in one space dimension satisfies the Schrodinger

equation
2

, h
Zh\I/t = _%\me + V(ac)‘lf,

where V' is the potential, m the mass and A = h/27, h being Planck’s constant. We
separate variables by setting

U(z,t) = o(t)y().
We set the  and t terms equal to the constant E and obtain the equation
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which is the time-independent Schrodinger equation. Set
q(x) = E =V (x),

and )
P
2m

to obtain an equation of the form (1).

3. The Nonoscillatory Case: If q(x) < 0 over the interval of interest, set q(z) = —k(z)?,
where k(z) > 0. The equation becomes

e’y — k(z)%y = 0. (5)

Were k(z) = ko, a real constant, then (5) would have linearly independent, nonoscillatory
solutions of the form exp (+kox /). This suggests the change of variable

y=e = . (6)
The function u satisfies the equation

eu’ +u” — k(z)? = 0.



We set ' = v to get

ev' + 0% — k(z)? = 0.
. Plug the regular perturbation expansion
v=1v9+eEvy+---.

into (7):

e(vo +evi + ) + (vo +evy + )2 — k(z)* = 0.

Matching powers of € gives the equations

O(1): vi—k(x)*=0,

O(e): 2wovy = —0}.
From the O(1) equation we obtain
vo(z) = k().

Put this in the O(g) equation to get

Thus v has the expansion

K (x)

v(x) = +k(x) — 62]43(13)

+ 0(£?).

And since v = v/,

(@) = i/j k(2) dz gln% +0(e?),

where £ is arbitrary. Thus

u(=)

y+(x) =e"=
. @ % :I:%ka(z)dz O(e)
N [m)} ©

B @ %ei%f: k(z)dz
= {k(az)} (1+0O(e)).

(10)

In (10), we have approximations of two linearly independent solutions to (5), one with the
plus sign and the other the minus. Thus, to leading order, any solution y to (5) will have

the WKB approximation
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for constants ¢; and cs.

. Example: Find the WKB approximation to the solution of the equation
2y —(1+x)?y=0, forz>0e<1,
y(0) =1,
y(oo) = 0.

Take ¢ = 0. The WKB approximation has the form

c1 6§f0””(1+z)dz+ C2 ef%foz(lJrz)dz' (12)

ya(m):\/l—kx Vi+zx

The second boundary condition forces us to take ¢; = 0. The first boudnary condition
then implies that co = 1. Hence, to leading order,

1 6_% f:(l—i—z) dz

- (o)
¢ z). (13)

. The Oscillatory Case: When ¢(x) > 0 over the interval of interest, we set ¢(z) = k(z)?,

where k(z) > 0. The equation becomes
e2y" + k(x)*y = 0. (14)

Were k(x) = ko, a real constant, then (14) would have oscillatory solutions of the form
exp (tikox/e). This suggests the change of variable

iu(x)

y=e - , (15)

for some real-valued function u(x). The same analysis as the foregoing yields WKB ap-
proximations to linearly independent solutions to equation (14):

1 e:l:é f: k(z) dz.
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) (16)

y+(x) =

To finish the derivation, use the Coates-Euler formula e = cos@ + isiné, to rewrite v+
terms of sines and cosines. Then use these to form the the WKB approximation to the
general solution to (14):

C1 . 1 v Co 1 z
T) X Y.(xr) = sin | — k(z)dz cos | — k(z)dz |,
V) = i) = s (/5 ) >+ - (/5 ) ) (17)




for constants c; and co. We can multiply and divide the above expression by
A=( +a)2,

and then rewrite it as

where
C1
¢ = arctan —
C2

is the phase.
. Example: Consider the time-independent Schrdodinger equation (4). If £ > V(z), we

have the oscillatory case. Since h is small, we can apply the WKB method obtain the
approximate solution

(B - V()

Yao(x) = #cos (@/j \/E—V(z)dz—gb).



