
WKB (Wentzel-Kramers-Brillouin) Approximation

1. We apply the WKB method to approximate solutions to equations of the form

ε2y′′ + q(x)y = 0, ε� 1, (1)

y′′ + q(εx)2y = 0, ε� 1, (2)

and
−y′′ + q(x)y = λ2p(x)y, λ� 1. (3)

2. Example: The wave function Ψ(x, t) in one space dimension satisfies the Schrödinger
equation

ih̄Ψt = − h̄2

2m
Ψxx + V (x)Ψ,

where V is the potential, m the mass and h̄ = h/2π, h being Planck’s constant. We
separate variables by setting

Ψ(x, t) = φ(t)y(x).

We set the x and t terms equal to the constant E and obtain the equation

h̄2

2m
y′′ + (E − V (x))y = 0, (4)

which is the time-independent Schrödinger equation. Set

q(x) = E − V (x),

and
h̄2

2m
= ε2

to obtain an equation of the form (1).

3. The Nonoscillatory Case: If q(x) < 0 over the interval of interest, set q(x) = −k(x)2,
where k(x) > 0. The equation becomes

ε2y′′ − k(x)2y = 0. (5)

Were k(x) ≡ k0, a real constant, then (5) would have linearly independent, nonoscillatory
solutions of the form exp (±k0x/ε). This suggests the change of variable

y = e
u(x)

ε . (6)

The function u satisfies the equation

εu′′ + u′
2 − k(x)2 = 0.



We set u′ = v to get
εv′ + v2 − k(x)2 = 0. (7)

4. Plug the regular perturbation expansion

v = v0 + εv1 + · · · .

into (7):
ε(v0 + εv1 + · · ·)′ + (v0 + εv1 + · · ·)2 − k(x)2 = 0.

Matching powers of ε gives the equations

O(1) : v2
0 − k(x)2 = 0,

O(ε) : 2v0v1 = −v′0.

From the O(1) equation we obtain

v0(x) = ±k(x).

Put this in the O(ε) equation to get

v1(x) = − k′(x)
2k(x)

.

Thus v has the expansion

v(x) = ±k(x)− ε
k′(x)
2k(x)

+ O(ε2). (8)

And since v = u′,

u(x) = ±
∫ x

ξ

k(z) dz − ε

2
ln

k(x)
k(ξ)

+ O(ε2), (9)

where ξ is arbitrary. Thus

y±(x) = e
u(x)

ε

=
[

k(ξ)
k(x)

] 1
2

e
± 1

ε

∫ x

ξ
k(z) dz

eO(ε)

=
[

k(ξ)
k(x)

] 1
2

e
± 1

ε

∫ x

ξ
k(z) dz

(1 + O(ε)). (10)

In (10), we have approximations of two linearly independent solutions to (5), one with the
plus sign and the other the minus. Thus, to leading order, any solution y to (5) will have
the WKB approximation

y(x) ≈ ya(x) =
c1√
k(x)

e
1
ε

∫ x

ξ
k(z) dz

+
c2√
k(x)

e
− 1

ε

∫ x

ξ
k(z) dz

, (11)



for constants c1 and c2.

5. Example: Find the WKB approximation to the solution of the equation ε2y′′ − (1 + x)2y = 0, for x > 0, ε� 1,
y(0) = 1,
y(∞) = 0.

Take ξ = 0. The WKB approximation has the form

ya(x) =
c1√
1 + x

e
1
ε

∫ x

0
(1+z) dz +

c2√
1 + x

e
− 1

ε

∫ x

0
(1+z) dz

. (12)

The second boundary condition forces us to take c1 = 0. The first boudnary condition
then implies that c2 = 1. Hence, to leading order,

y(x) ≈ ya

=
1√

1 + x
e
− 1

ε

∫ x

0
(1+z) dz

=
1√

1 + x
e−

1
ε

(
x+ x2

2

)
. (13)

6. The Oscillatory Case: When q(x) > 0 over the interval of interest, we set q(x) = k(x)2,
where k(x) > 0. The equation becomes

ε2y′′ + k(x)2y = 0. (14)

Were k(x) ≡ k0, a real constant, then (14) would have oscillatory solutions of the form
exp (±ik0x/ε). This suggests the change of variable

y = e
iu(x)

ε , (15)

for some real-valued function u(x). The same analysis as the foregoing yields WKB ap-
proximations to linearly independent solutions to equation (14):

y±(x) =
1√
k(x)

e
± i

ε

∫ x

ξ
k(z) dz

. (16)

To finish the derivation, use the Coates-Euler formula eiθ = cos θ + i sin θ, to rewrite y±
terms of sines and cosines. Then use these to form the the WKB approximation to the
general solution to (14):

y(x) ≈ ya(x) =
c1√
k(x)

sin

(
1
ε

∫ x

ξ

k(z) dz

)
+

c2√
k(x)

cos

(
1
ε

∫ x

ξ

k(z) dz

)
, (17)



for constants c1 and c2. We can multiply and divide the above expression by

A = (c2
1 + c2

2)
1
2 ,

and then rewrite it as
A√
k(x)

cos

(
1
ε

∫ x

ξ

k(z) dz − φ

)
, (18)

where
φ = arctan

c1

c2

is the phase.

7. Example: Consider the time-independent Schrödinger equation (4). If E > V (x), we
have the oscillatory case. Since h̄ is small, we can apply the WKB method obtain the
approximate solution

ya(x) =
A

(E − V (x))
1
4

cos

(√
2m

h̄

∫ x

ξ

√
E − V (z) dz − φ

)
.


