Singular Perturbation

1. When the character of the problem changes discontinuously at € = 0 we have a singular
perturbation.

2. Consider the boundary value problem

5y”+(1—|—5)y/—|—y:0, f0r0<t<17€<<]-7
(P)q ¥(0) =0,
y(1) = 0.

The regular perturbation expansion

y=yo+eyi+---, (1)

leads to the problem
yo+yo=0, for0<t<l,
yo(1) = 0.

Since the equation for yq is of the first-order, we can’t satisfy both boundary conditions.
Regular perturbation fails. It is clear that the order of the equation in (P) drops from two
to one at € = 0. Thus the perturbation is singular.

3. The solution to (P) is

ut) = 5= @
Thus
y'(0)=0("") and y"(0)=0("?), (3)
as € | 0. Away from t = 0 (say, at t = .5)
y(:5) =0(1), y'(5)=0(1), and y"(.5)=0(1), (4)

as € | 0. In a correctly scaled problem, the variable terms should be O(1). Thus (3) and
(4) suggest that (P) needs rescaling for ¢ < 1, but not for t = O(1).

4. The Outer Approximation: For ¢t = O(1), the outer region, we need not rescale. We
will thus approximate y there using the regular perturbation exapnsion (1), along with the
boundary condition y(1) = 1. This yields the leading-order problem

{yé +yo =0, fort=0(1),

The solution is yo = e!~t. We take this as our outer approzimation y,(t). Thus

y(t) = yo(t) = et for t = O(1).



5. Definition: The region near ¢ = 0 in which y is changing rapidly is called the boundary
layer.

6. Balancing: Let (¢) be the width of the boundary layer. It is natural to rescale the
problem near ¢ = 0 by setting

T = % and Y (1) =y(t). (5)
The new equation is
€ " ﬂ "(r ) =
WY(r)jLLS(s)}Y()JrY() 0. (6)

If the equation has been correctly rescaled for t in the boundary layer, then Y and its
derivatives should be O(1), with the maginitudes of the terms given by the coefficients

and 1.

8(e)?’ d(e)” d(e)

We determine d(g) by seeking a two-term dominant balance that will allow us to simplify
equation (6). The simplified equation should yield an approximation to Y (7) that satisfies
the boundary condition at 7 = 0 as well as a matching condition at the right edge of the
boundary layer. If it is to meet both requirements, the approximation must be the solution
to a second- order equation. For this reason, one of the terms in the dominant balance
must be £/6(g)2. We thus have:

a. @ and % are dominant. This yields d(¢) = O(e), so that the dominant terms are
O(¢71) and the others O(1).

b. 552 and 1 are dominant. Thus ¢ () = O(y/e) so that the dominant terms are O(1) and
the “neglible” ones O(e~2). Clearly (b) won’t work.

¢. 5757 and 55 are dominant. Thus § (¢) = O(1), which gives dominant terms of O(g) and
“negligible” ones of O(1). This clearly won’t work either.

We conclude that the two-term dominant balance is given by (a). We should thus take
i(e) =e. (7)
Note for ¢ in the boundary layer, 7 = O(1).
7. The Inner Approximation: The choice (7) leads to the inner problem

Y'+Y +e(Y'+Y)=0, for7=0(1),
Y (0) = 0.



Since the scaling is now assumed correct, we may resort to regular perturbation. Set
Y=Yy+eY +---.
This gives the leading-order problem

Y +Y] =0, forT=0(),
Yo(0) = 0.

Thus .
Yo(T) = 01(1 — 6_T) = 01(1 — 6_5).

We thus obtain the inner approximation,

y(t) = y;(t) = C1(1 — 6_5) for t = O(e).

. Matching: We choose C to make y;(t) and y,(t) coincide (as € | 0) in some intermediate
zone between the boundary layer t = O(e) and the outer region ¢ = O(1). Suppose that
we’re in the intermediate region when

t=0(a), (8)

for some o = a(e) that is much larger than O(e) but much smaller than O(1). Accordingly,
we stipulate that

. € .
161%1 a@ 151?8 a(e) = 0. (9)

An obvious choice is .
ale) =¢e2, (10)

though & for any b € (0,1) would do just as well. Define the intermediate variable

n=—, (11)

t
o}
which is O(1) in the intermediate region. Thus

n

yi(t) = yi(Ven) = C1(1 — e V7),

and
yo(t) = yo(\/gn) = el—\/En‘

In order to make the approximations coincide in the intermediate region as € | 0, we
impose the matching condition:

lim y; (ven) = lim y,(v/en),
€l0 el0



10.

11.

so that
Cy =limCy(1 — e_%)
€l0
— lim e}~ VEn
€l0
=e. (12)

The inner approximation is thus

yi(t) =e(l —e %) fort = O(e).

Uniform Approximation: To obtain an approximation y, that is valid uniformly on
[0, 1], we add the inner and outer appoximations and subtract their common limit (8) in
the intermediate zone:

Yu(t) = yi(t) + yo(t) —e = et — el %, (13)
It is easy to show that

syu+(1+6)yu+yu—0 for 0 <t <1,

ni)=0.
()—1—6 e,

Thus y, satisfies the differential equation and the left boundary condition of (P). At the
right-hand boundary we have

1—yu(1)=e'"¢ =o(e") ase 0,
for any positive integer n.

Note: It isn’'t necessary that a uniform approximation y, satisfy the same differential
equation as the true solution y, though that does happen in the foregoing example. All we
really require is that y, — y as € | 0, uniformly on the interval of interest.

Example: Consider the boundary value problem

ey’ +y' =2t, for0<t<l1, ek,
(@) § ¥(0) =1,
y(1) = 1.

Regular perturbation yields the leading order problem

Yo = 2t, for0 <t <1,



12.

13.

14.

15.

The general solution to the equation is yg(t) = t?>+C. We thus cannot satisfy both boundary
conditions.

The outer approximation is the solution to the boundary value problem

{y6 =2t, fort=0(1),

Hence
yo(t) =t* for t = O(1).

We have to determine the width §(g) of the boundary layer near t = 0. As in the previous
example, we set

t
=50 and Y (1) = y(t). (14)
The new equation is .
- (E)QY"(T) + 5V ) -2 =0 (15)

The two-term dominant balance is provided by the coefficients /5(¢)? and 1/6(g). We
conclude that the boundary layer has width d(e) = O(e).

We set §(e) = € and define the new variables

. g and V(1) = y(t).

Then for 7 = O(1),

1 1
YT+ Y — 282 = 0.
g &

Regular perturbation yields the leading order problem

Y +Y) =0, forTm=0(1),
Yo(0) =1,

with solution
Yo(r)=(1—-C)+Ce™".

The inner approximation is thus,
yi(t) = (1= C)+ Ce~= fort = O(e).

To obtain C' we match in the intermediate region ¢t = O(y/e). Define the intermediate
variable

t
T/_%v



16.

17.

18.

and stipulate that
limy; (Ven) = lim yo(v/en).
€l0 €l0

Thus
1—0211111(1—0)"—06_%
€l0
_1; 2
_151?8577
=0. (16)

Hence C' =1 and )
yi(t) =e"= fort =O(e).

To obtain a uniformly valid approximation, add the inner and outer solutions and subtract
the common intermediate limit (12):

IS

Yu(t) = yi(t) +yo(t) =t* + e 5.

It is easily checked that
eyn +yl, = 2t + 2e.

Hence y,, satisfies the differential equation in (@) as ¢ | 0. And at the boundaries,

yu(o) = 17

and )
Yu(l) =1+e =,

Thus y, (1) — 1 = o(¢™) as € | 0 for all positive n.

A couple of points concerning boundary layers:

When in doubt, assume the existence of a boundary layer at ¢ = 0. If the assumption is in-
correct, the procedure will break down when you try to match the inner and outer solutions
in the intermediate region. At this point you may assume that there is a boundary layer
near the right endpoint ¢y. The analysis is the same, except that the scale transformation
in the boundary layer is
_lo—t
e

. It is not necessarily the case that the boundary layer has width d(¢) = O(e).

Proposition: Let p(t) and ¢(t) be continuous, with p(¢) > 0 on [0,1]. For the boundary
value problem

ey +pt)y +qt)y=0, for0<t<l1, ek,

y(0) = a,

y(1) =0,



there exists a boundary layer at ¢t = 0 with inner and outer approximations given respec-
tively by

_rO)

yz(t) :Cl+(a—01)6 e,

and
1 q(s) dS

Yo(t) = beft p(s) 7

where
1 Q(S) ds

C, = befo p(s)



