Integral Asymptotics: Laplace’s Method

1. We’ll use Laplace’s method to determine the leading-order behavior of the integal
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as A — o0o. We'll assume without further comment that I(\) converges for A sufficiently
large, that f and g are smooth enough near to be replaced by local Taylor approximations
of appropriate degree.

2. We'll first consider the case in which g assumes a strict minimum over [a, b] at an interior
critical point c. Assume that
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We can rewrite the integral as
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The main idea is this: For A > 1, the main contribution to the integral comes from a small
neighborhood of ¢. Thus, for A > 1,
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Thus, to leading order,
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as A — oo. (3)

Here, the symbol “~” means that the right-hand side is the first term in an asymptotic
expansion of the left-hand side.

. If g has its minimum over [a, b] at an endpoint (say, t = a) with ¢’(a) = 0, ¢”(a) > 0, then
analysis similar to the foregoing yields

I(A) ~ e M@ £ () as A — oo, (4)
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with the obvious modification when ¢t = b.

. Example: We can use the method of Laplace to determine the leading order behavior of
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Let g(t) = cosht and f(t) = sint/t. The function g assumes a strict minimum over [—1, 1]
at the interior point ¢ = 0, with ¢’(0) = 0 and ¢”(0) = 1. And since f(0) = 1, we have by
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I(\) ~ e_A\/? as A — oo. (5)

. There are three ideas behind Laplace’s method. These are

. For A > 1, the main contribution to /(\) comes from a small region of the minimizer ¢ = c.
We can thus replace an integral over [a,b] with an integral over (¢ —¢,c+¢€). (Or over
[a,a 4 ¢€) or (b— e, b] as the case may be).

. In the small neighborhood of the minimizer, we can approximate f(¢) and g(¢) with Taylor
polynomials.

. We may extend the interval of integration to include any region that only contributes
higher-order terms to I(\) as A — oo.

. Note: Formulas (3) and (4) are valid for infinite and semi-infinite intervals of integration,
provided I(\) converge for A large.

. The Gamma Function: For z > 0 we define the gamma function
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It isn’t hard to show that
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To prove the second claim we make the change of variable ¢tz = u and use the fact that
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for a > 0.

8. Integration by parts yields
[z +1) = 2T (x), (6)

for any x > 0. Thus I'(2) =T(1) =1, T'(3) =2I'(2) =2 x 1, I'(4) = 3I'(3) = 3 x 2 x 1, etc.
In general,

for any nonnegative integer n. Thus (6) tells us that the gamma function is a continuous
generalization of the factorial function.

9. Example: Derive Stirling’s approximation:
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Apply Laplace’s method to the integral in (7) with f(z) =1 and g(z) = z — Inz. We see
that g has a strict minimum over (0,00) at z = 1, with g(1) =1, ¢’(1) = 0 and ¢"(1) = 1.

Thus,
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and so

2
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Now set 2 = n and use the fact that I'(n + 1) = nl.

10. Higher-Order Asymptotics: With the gamma function, we can find higher-order terms
in an asymptotic expansion. Suppose for example that g(t) assumes a strict minimum over
[a,b] at an interior point ¢, that ¢’(c) = 0, ¢"(c) # 0, f(c) = 0 and f”(c¢) # 0. Then for
A>1,
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Make the change of variable

and use properties of the gamma function to show that
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Thus, to leading order,
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