
Green’s Functions

1. The Dirac δ function is defined on Rn by

δ(x) =
{

0 for x 6= 0,
∞ for x = 0, (1)

with ∫
Rn

δ(x) dx = 1. (2)

From properties (1) and (2), we can show that∫
B

δ(x) dx =
{

0 if x /∈ B,
1 if x ∈ B,

(3)

and that ∫
B

δ(x)f(x) dx =
{

0 if 0 /∈ B,
f(x) if 0 ∈ B, (4)

This last easily generalizes to∫
B

δ(z − x)f(x) dx =
{

0 if z /∈ B,
f(z) if z ∈ B, (5)

Thus, ∫
Rn

δ(z − x)f(x) dx = f(z). (6)

2. There are two problems: The first is that the δ function cannot exist in the traditional
sense of the word “function.” The second is that the judicious use of the δ function always
yields the right answer. We can solve both these problems by defining the δ function as a
generalized functio or distribution.

3. Let L be a linear differential operator. For example,

L =
n∑

i=0

an(x)
dn

dxn
, (7)

or a partial differential operator,

L = ∆ =
n∑

i=1

∂2

∂x2
i

, (8)

which is the n-dimensional Laplacian. To solve the inhomogeneous equation

Lu(x) = f(x),



we assume that L can be inverted and that the inverse takes the form of an integral
operator:

u(x) = L−1f(x) =
∫

B

K(x, y)f(y) dy.

Thus
f(x) = Lu(x) = L

∫
B

K(x, y)f(y) dy“ = ”
∫

B

LK(x, y)f(y) dy. (9)

It follows that in some sense,
LK(x, y) = δ(x− y). (10)

A function satisfying (10) is called a fundamental solution for L.

4. Since the δ function is not really a function, we will at some point have to explain (10)
more carefully. What does it mean to apply a differential operator L to a function K to
obtain a distribution, or generalized function δ?

5. Vague Definition: A Green’s function is a fundamental solution that has been
equipped with certain boundary values.

6. Consider the second-order, ordinary differential operator

L = a2(x)D2 + a1(x)D + a0(x), (11)

where the ai are smooth and a2(x) 6= 0 on the interval I of interest. The homogeneous
problem is

Lu = 0, (12)

and the inhomogeneous problem,
Lu = f(x), (13)

for some given function f . Take f to be continuous.

7. Let u1 and u2 be linearly independent solutions to the homogeneous problem, and up

a particular solution to the inhomogeneous problem. Then the Wronskian

W (x) =
∣∣∣∣ u1(x) u2(x)
u′1(x) u′2(x)

∣∣∣∣
is nonzero on I. The general solution to () is

u(x) = c1u1(x) + c2u2(x) + up(x), (14)

where up a particular solution to ().

8. The variation of parameters formula gives the particular solution

up(x) = u2(x)
∫ x

a

u1(z)
a2(z)W (z)

f(z) dz − u1(x)
∫ x

a

u2(z)
a2(z)W (z)

f(z) dz. (15)



9. Suppose that we want a fundamental solution for L. Think of y as a parameter, and
set u(x) = K(x, y) and f(x) = δ(x − y) in (). Then by (), every fundamental solution of
L is of the form

K(x, y) = c1(y)u1(x) + c2(y)u2(x) + Kp(x, y), (16)

where

Kp(x, y) = u2(x)
∫ x

a

u1(z)
a2(z)W (z)

δ(z − y) dz − u1(x)
∫ x

a

u2(z)
a2(z)W (z)

δ(z − y) dz

=

{
0 for x < y,

u2(x)u1(y)−u1(x)u2(y)

a2(y)W (y) for x ≥ y.
(17)

10. You have the right to ask whether (17) really is a fundamental solution, i.e. whether

L

∫ b

a

K(x, y)f(y) dy = f(x), (18)

for f continuous on [a, b]. The answer is “yes” as long as we assume that c1 and c2 are
continuous functions of y. Note that with this assumption,

a. K(x, y) is continuous,

b. K(x, y) is C2 in x for x 6= y,

c. LK(x, y) = 0 for x 6= y, and

d. K(x, x + 0)−K(x, x− 0) = −a2(x)−1.

It follows from (a)-(d) that

L

∫ b

a

K(x, y)f(y) dy = f(x).

11. Proposition: Any function F (x, y) satisfying (a)-(d) is a fundamental solution for L.

12. Let L = D2 + 1. Then u1 = cos x, u2 = sinx, a2(x) ≡ 1 and W (x) ≡ 1. Thus

Kp(x, y) =
{

0 for x < y,
sin (x− y) for x ≥ y.

Every fundamental solution for L is of the form

K(x, y) = c1(y) cos x + c2(y) sinx + Kp(x, y). (19)

13. Two-Point Boundary Value Problems: We often have to solve the equation Lu(x) =
f(x) on I = [a, b] subject to boundary conditions on u and u′. Common conditions are



Homogeneous Dirichlet: u(a) = u(b) = 0.

Homogeneous Neumann: u′(a) = u′(b) = 0.

Separated Boundary Conditions: α0u(a) + α1u
′(a) = 0 and β0u(b) + β1u

′(b) = 0.

Periodic Boundary Conditions: u(a) = u(b) and u′(a) = u′(b).

We can use boundary operators B1 and B2 in the representation of boundary conditions.
Note that in the examples, the boundary operators are linear. The problem

(P )

 Lu = f(x) for a < x < b,
B1u = 0,
B2u = 0,

is called a two-point boundary value problem.

14. Suppose we want to solve (P ). Let G(x, y) be a fundamental solution satisfying (as a
function of x with a < y < b) the boundary conditions:

B1G(y) = B2G(y) = 0 for a < y < b. (20)

Let

u(x) =
∫ b

a

G(x, y)f(y) dy. (21)

Since G is a fundamental solution, u really does satisfy the equation Lu = f . As for the
boundary conditions,

B1u = B1

∫ b

a

G(x, y)f(y) dy =
∫ b

a

B1G(y)f(y) dy = 0, (22)

and

B2u = B2

∫ b

a

G(x, y)f(y) dy =
∫ b

a

B2G(y)f(y) dy = 0. (23)

Hence u is a solution to (P )

15. How do we find the Green’s function? Let’s consider the case of homogeneous Dirichlet
data:

1. Since the Green’s function is a fundamental solution, it must be of the form

G(x, y) = c1(y)u1(x) + c2(y)u2(x) + Kp(x, y). (24)

We already have Kp, u1 and u2 so it only remains to find c1 and c2

2. Apply the boundary operators:

B1G(y) = c1(y)B1u1 + c2(y)B1u2 + B1Kp(y) = 0,



and
B2G(y) = c1(y)B2u1 + c2(y)B2u2 + B2Kp(y) = 0.

In matrix form, this is [
B1u1 B1u2

B2u1 B2u2

] [
c1(y)
c2(y)

]
= −

[
B1Kp(y)
B2Kp(y)

]
. (25)

We can solve (25) uniquely for the ci(y) if and only if

det(Biuj) 6= 0. (26)

3. If (26) holds, then we solve for the coefficient functions ci(y) and for the Green’s function
G(x, y).

16. Example: Consider the boundary value problem

(P1)

 u′′ + u = f(x) for 0 < x < π,
u′(0) = 0,
u(π) = 0.

Here, L = D2 +1, B1u = u(0) and B2u = u(π). We take as linearly independent solutions
to the homogeneous problem u1 = cos x and u2 = sinx. Since

det(Biuj) 6= 0,

the Green’s function exists. Following the above recipe yields

G(x, y) =
{

cos x sin y for 0 ≤ x < y < π,
sinx cos y for 0 < y < x ≤ 1.

Hence a solution to (P1) is

u(x) =
∫ π

0

G(x, y) f(y) dy.


