Green’s Functions

1. The Dirac ¢ function is defined on R™ by

5(:0):{0 for = # 0,

oo for x =0,
with

d(z)dx = 1.
R”

From properties (1) and (2), we can show that
_Jo0o ifz¢ B,
/B‘S(x)dx_ { 1 ifz € B,

(o if 0 ¢ B,
/B‘S(x)f(x) dr = {f(a:) if 0 € B,

This last easily generalizes to

/B‘S(Z ~o)f(w)dr = {(}(z) i g:

and that

Thus,
6(z — ) f(z) dz = f(2).

R”

(6)

2. There are two problems: The first is that the J function cannot exist in the traditional
sense of the word “function.” The second is that the judicious use of the ¢ function always
yields the right answer. We can solve both these problems by defining the § function as a

generalized functio or distribution.

3. Let L be a linear differential operator. For example,

n d”
L= Z an(fli)dx—n,
i=0

or a partial differential operator,



we assume that L can be inverted and that the inverse takes the form of an integral
operator:

u(x) = L f(z) = /B K(z,y)f () dy.
Thus
f(2) = Lu(z) = L / K(2,y)f(y) dy* =" / LK (2, )] (y) dy. (9)
B B

It follows that in some sense,

LEK(z,y) = 0(z —y). (10)
A function satisfying (10) is called a fundamental solution for L.
4. Since the § function is not really a function, we will at some point have to explain (10)

more carefully. What does it mean to apply a differential operator L to a function K to
obtain a distribution, or generalized function §7

5. Vague Definition: A Green’s function is a fundamental solution that has been
equipped with certain boundary values.

6. Consider the second-order, ordinary differential operator
L = as(2)D? 4 a1 (z)D + ag(z), (11)

where the a; are smooth and az(z) # 0 on the interval I of interest. The homogeneous
problem is
Lu =0, (12)

and the inhomogeneous problem,
Lu= f(z), (13)

for some given function f. Take f to be continuous.

7. Let u; and uy be linearly independent solutions to the homogeneous problem, and u,,
a particular solution to the inhomogeneous problem. Then the Wronskian

is nonzero on I. The general solution to () is
u(z) = crug(x) + coug(z) + up(x), (14)

where u, a particular solution to ().

8. The variation of parameters formula gives the particular solution

up(2)

wlo) = uale) [ DS d ) [ e )

a



9. Suppose that we want a fundamental solution for L. Think of y as a parameter, and
set u(x) = K(x,y) and f(x) = d(z — y) in (). Then by (), every fundamental solution of
L is of the form

K(z,y) = ci(y)ur(2) + cay)ua(z) + Kp(z,y), (16)
where
Ky(z,y) = uz(x) /37 #&Vz)(z)é(z —y)dz — up(x) /m #g/;)(z)é(z —y)dz
{ 0 for x < vy, an
- U2($i:(1£4‘3v—(1; (z)uz(y) for o > y.

10. You have the right to ask whether (17) really is a fundamental solution, i.e. whether

b
L / K(z,9)f(y) dy = f(2), (18)

for f continuous on [a,b]. The answer is “yes” as long as we assume that ¢; and ¢y are
continuous functions of y. Note that with this assumption,

a. K(x,y) is continuous,

b. K(z,y)is C? in x for x # y,

c. LK(z,y) =0 for z # y, and

d. K(z,z4+0) — K(z,2 —0) = —as(x) L.

It follows from (a)-(d) that

L / K(z,9)f(y) dy = f(2).

11. Proposition: Any function F'(z,y) satisfying (a)-(d) is a fundamental solution for L.
12. Let L = D? + 1. Then uj = cosz, up = sinx, az(z) =1 and W (z) = 1. Thus

0 for x < y,
sin(z —y) forz >y.

(o) = {
Every fundamental solution for L is of the form

K(z,y) = ci1(y) cosz + ca(y) sinz + Kp(z,y). (19)

13. Two-Point Boundary Value Problems: We often have to solve the equation Lu(z) =
f(z) on I = [a,b] subject to boundary conditions on u and /. Common conditions are



Homogeneous Dirichlet: u(a) = u(b) = 0.
=u

'(b)
Separated Boundary Conditions: agu(a) + aiu/(a) = 0 and Byu(b) + f1u’(b) = 0.

0.

Homogeneous Neumann: u’(a)

Periodic Boundary Conditions: u(a) = u(b) and u'(a) = u/(b).

We can use boundary operators B; and B, in the representation of boundary conditions.
Note that in the examples, the boundary operators are linear. The problem

Lu= f(z) fora<uz<b,
(P) Bluzov
BQUZO,

is called a two-point boundary value problem.

14. Suppose we want to solve (P). Let G(x,y) be a fundamental solution satisfying (as a
function of x with a < y < b) the boundary conditions:

B1G(y) = BoG(y) =0 fora <y <b. (20)
Let )
u(w) = [ Glay)fw)dy (21)

Since G is a fundamental solution, u really does satisfy the equation Lu = f. As for the
boundary conditions,

Biu= B, / Gz, ) f(y) dy = / B1G(y) f(y) dy =0, (22)

and

b b
Bau=Bs | Gla)fw)dy= | BaGw)f(s)dy=0. (23)
Hence u is a solution to (P)

15. How do we find the Green’s function? Let’s consider the case of homogeneous Dirichlet
data:

1. Since the Green’s function is a fundamental solution, it must be of the form

G(z,y) = c1(y)ui(z) + ca(y)uz(z) + Kp(,y). (24)

We already have K,,, u; and ug so it only remains to find ¢; and ¢

2. Apply the boundary operators:

B1G(y) = c1(y)Biur + c2(y)Biug + B1 Ky (y) =0,



and

ByG(y) = c1(y)Baui + c2(y) Bous + Ba Ky (y) = 0.

In matrix form, this is

En ] (2] =[]

We can solve (25) uniquely for the ¢;(y) if and only if

det(BZ-uj) 7é 0.

(26)

3. If (26) holds, then we solve for the coefficient functions ¢;(y) and for the Green’s function

G(z,y).
16. Example: Consider the boundary value problem

' 4+u=f(z) for0<z<m,
(P1)  w'(0) =0,
u(m) = 0.

Here, L = D? + 1, Byu = u(0) and Bou = u(r). We take as linearly independent solutions

to the homogeneous problem u; = cosx and us = sinz. Since
det(Biuj) 7é 0,

the Green’s function exists. Following the above recipe yields

_ Jceosxsiny for0<z<y<m,
G(x’y)_{sinxcosy for0<y<ax<1.

Hence a solution to (P;) is

u(r) = / " Glary) f) dy.



