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1. The notation of Laurent Schwartz: A multi-index is an n-tuple

α = (α1, . . . , αn),

where the ai are nonnegative integers. If a is a multi-index, then

|α| = α1 + · · ·+ αn.

The general partial differential monomial is

Dα =
∂|α|

∂xα1
1 · · · ∂xαn

n

.

For example, if
α = (1, 0, 2),

then

Dα =
∂3

∂x1∂x2
3

.

So if u = u(x1, x2, x3) then

Dαu =
∂3u

∂x1∂x2
3

.

If α = (0, . . . , 0), we set
Dαu = u.

For z = (z1, . . . , zn) ∈ Cn,
zα = zα1

1 · · · zαn
n .

2. The Fourier transform of f is

(Ff)(ξ) = f̂(ξ) =
∫

f(x)e−2πiξ·x dx, (1)

where the integral is taken over Rn.

3. Note: In the study of the Fourier transform, it is necessary to integrate functions and
partial derivatives of all orders over Rn. For this reason, one generally defines the Fourier
transform first for a set of infinitely smooth, rapidly decaying functions called the Schwartz
class. Rather than make a careful preliminary study of the Schwartz class, we will just
assume that functions are as smooth we need, and that those functions and their partial
derivatives decay as rapidly as we need. This saves us any worry about differentiability
and convergence of integrals.



4. Liouville’s theorem (and a little complex contour integration) allows us to show that for
compex numbers a and b such that < a > 0,∫ ∞

−∞
e−a(x−b)2 dx =

√
π

a
.

5. Example: For ε > 0 and x ∈ Rn, the Gauss kernel is

Gε(x) =
(

1
4πε

)n
2

e−
|x|2
4ε .

The Fourier transform is

Ĝε(ξ) =
∫

Gε(x)e−2πiξ·x dx = e−4επ2|ξ|2 .

6. The function Gε has some useful properties:

a. Gε(x) ≥ 0 for all x.

b.
∫

Gε(x) dx = 1 for all ε > 0.

c. For δ > 0,

lim
ε↓0

∫
|x|≥δ

Gε(x) dx = 0.

d. For δ > 0,
lim
ε↓0

sup
|x|≥δ

Gε(x) = 0.

It isn’t hard to see (draw some pictures) that in some sense

Gε(x) → δ(x) as ε ↓ 0. (2)

You can in fact show that for any function Gε(x) with properties (a)-(d),

lim
ε↓0

∫
Gε(x− y)f(y) dy = f(x), (3)

as long as f is reasonably nice. Thus (2) holds in the sense of (3). The function Gε is
called an approximate identity as ε ↓ 0.

7. Proposition: The Fourier transform is linear.



8. Proposition: For a ∈ Rn, let τa be the translation operator

(τaf)(x) = f(x− a).

Then
(τaf )̂ (ξ) = f̂(ξ)e−2πiξ·a.

9. Proposition: For a ∈ Rn, let µa be the modulation operator

(µaf)(x) = f(x)e−2πia·x.

Then
(µaf )̂ (ξ) = f̂(ξ + a).

10. Proposition: For any multi-index α,

(Dαf )̂ (ξ) = (2πiξ)αf̂(ξ) = (2πi)|α|ξαf̂(ξ).

To see this, use integration by parts and the rapid decay of f to show that

f̂xj
(ξ) = 2πiξj f̂(ξ).

Schematically,
∂

∂xj

F−→ 2πiξj . (4)

Repeated application of (4) yields the advertised formula.

11. Example: For f : Rn 7→ C suffciently smooth and rapidly decaying,

(∆f )̂ (ξ) = −4π2|ξ|2f̂(ξ). (5)

12. Definition: The convolution of f and g in is

(f ∗ g)(x) =
∫

f(x− y)g(y) dy.

13. Proposition: (f ∗ g)(x) = (g ∗ f)(x).

14. Proposition: (f ∗ g)̂ (ξ) = f̂(ξ) ĝ(ξ).



15. Definition: The inverse Fourier transform of a function g(ξ) is

ǧ(x) = (F−1g)(x) =
∫

g(ξ)e2πiξ·x dξ. (6)

Note that F−1 is also a linear operator.

16. The name “inverse Fourier transform” suggests that

(ĝ)̌ (x) = g(x). (7)

As we showed in class, (7) is indeed true, at least for smooth functions g of comapct
support on R. It is actually true (in various senses) for much larger classes of functions
defined on Rn. You can establish some of these results using eigenfunction expansions, or
with approximate identities like the Gauss kernel.

17. Define the L2 inner product on Rn by

〈f , g〉 =
∫

f(x)ḡ(x) dx.

The corresponding L2 norm is

‖f‖2 =
√
〈f , f〉 =

{∫
|f(x)|2 dx

} 1
2

.

The Plancherel identity is
〈f , g〉 = 〈f̂ , ĝ〉, (8)

for all f , g in L2(Rn). If we set g = f in (8), we get

‖f‖2 = ‖f̂‖2. (9)

In class, we used eigenfunction expansions to prove (8) for smooth functions of compact
support on R.


