Problems and Equations

1. Let B be a bounded subset of \mathbb{R}^3 enclosed by the smooth surface Q. Let ν be the outer unit normal to Q. Let

$$\tilde{Q} = Q \times [0, \infty).$$

Thus (x,t) lies in \tilde{Q} if $x \in Q$ and $t \geq 0$.

- **2**. Let u = u(x,t) be the temperature of a body occupying the region B at the point x and time t. Assume that
- **a.** The flux density vector is given by Fourier's law with a diffusion coefficient D, and
- **b**. That there are neither sinks nor sources in B. (Thus heat energy is conserved.)

The assumptions imply that u satisfies the heat equation

$$u_t - D\Delta u = 0. (1)$$

Let the initial temperature distribution be

$$u(x,0) = f(x), (2)$$

and the temperature on the boundary at time t be

$$u\big|_{\tilde{O}} = g(x,t). \tag{3}$$

The initial-boundary value problem (P_1) for u comprises equation (1) along with the conditions (2) and (3):

$$(P_1) \begin{cases} u_t - D\Delta u = 0, & \text{for } x \in B \text{ and } t > 0, \\ u(x,0) = f(x), \\ u|_{\tilde{Q}} = g(x,t). \end{cases}$$

3. If we prescribe the heat flux across Q rather than the temperature on Q, then the boundary condition (3) is replaced by

$$D_{\nu}u\big|_{\tilde{Q}} = h(x,t). \tag{4}$$

We thus have the initial-boundary value problem

$$(P_2) \begin{cases} u_t - D\Delta u = 0, & \text{for } x \in B \text{ and } t > 0, \\ u(x,0) = f(x), \\ D_{\nu} u \big|_{\tilde{Q}} = h(x,t). \end{cases}$$

If, for example, the body is insulated, we have the "no-flux" boundary condition

$$D_{\nu}u\big|_{\tilde{O}} = 0. \tag{5}$$

- 4. (P_1) and (P_2) are typical initial-boundary value problems for a parabolic equation.
- **5.** Suppose that, as $t \to \infty$, the temperature distribution achieves a time-independent equilibrium w = w(x). As we've seen, w is harmonic in B:

$$\Delta w(x) = 0, (6)$$

for $x \in B$. It makes no sense to assign an initial value to w, but we can prescribe w on the boundary:

$$w\big|_{Q} = g(x). \tag{7}$$

We thus have the Dirichlet problem

$$(P_3) \begin{cases} \Delta w = 0, & \text{for } x \in B, \\ w|_Q = g(x). \end{cases}$$

The boundary condition (7) is called the Dirichlet condition.

6. Suppose that there is a time-independent heat source h(x) in the original model, and that instead of u, we prescribe the heat flux on Q. The long-term temperature equilibrium would then be governed by

$$(P_4) \begin{cases} -\Delta w = \varphi(x), & \text{for } x \in B, \\ D_{\nu} w \big|_{Q} = g(x), \end{cases}$$
(8)

where $\varphi(x) = D^{-1}h(x)$. This is the Neumann problem for Poisson's equation. The condition (8) is a Neumann condition.

7. You can combine the Dirichlet and Neumann conditions to get a mixed boundary condition

$$a(x)w(x) + b(x)D_{\nu}w(x)\big|_{x \in Q} = g(x).$$

- 8. (P_3) and (P_4) are typical boundary value problems for elliptic equations.
- **9.** A thin, elastic membrane is stretched over a region B in \mathbb{R}^2 which is bounded by a smooth, closed curve Q. The membrane is clamped along Q. A disturbance causes small amplitude vibrations in the membrane. Let u = u(x,t) be the displacement from equilibrium at $x \in B$ and time t. We assume that u satisfies the wave equation

$$u_{tt} - c^2 \Delta u = 0, (9)$$

where c > 0 is a constant and Δ is the 2-dimensional Laplacian. (If there were an external force driving the vibrations, it would be represented by an inhomogeneity on the right-hand side of the equation.) Since the membrane is clamped on the boundary,

$$u\big|_{\tilde{O}} = 0. \tag{10}$$

Since the equation is second-order in time, we need to prescribe both u and u_t at t = 0. We thus have the initial-boundary value problem for the wave equation

$$(P_5) \begin{cases} u_{tt} - c^2 \Delta u = 0, & \text{for } x \in B \text{ and } t > 0, \\ u(x,0) = f(x), \\ u_t(x,0) = g(x), \\ u_{|\tilde{Q}} = 0. \end{cases}$$

- 10. (P_5) is a typical initial-boundary value problem for a hyperbolic equation.
- 11. Spatial domains are not always bounded. You might, for example, model vibrations on a long string with a pure initial value problem for the wave equation:

$$(P_6) \begin{cases} u_{tt} - c^2 u_{xx} = 0, & \text{for } x \in \mathbf{R} \text{ and } t > 0, \\ u(x,0) = f(x), \\ u_t(x,0) = g(x). \end{cases}$$

Another example is the Dirichlet problem in the upper half-plane:

$$(P_7) \begin{cases} w_{xx} + w_{yy} = 0, & \text{for } x \in \mathbf{R} \text{ and } y > 0, \\ w(x, 0) = f(x). \end{cases}$$
 (11)

You might wonder why we prescribe u and u_t in the (P_6) but only w in (P_7) . We do this because (P_7) is an elliptic problem modeling a time-independent equilibrium. We have to think of y = 0 not as an "initial line" but as the boundary of the spatial region y > 0. Thus (11) is a boundary condition, not one of a pair of initial conditions.