Problems and Equations

1. Let B be a bounded subset of R? enclosed by the smooth surface . Let v be the outer
unit normal to ). Let

Q = Q X [07 OO)
Thus (x,t) lies in Q if z € Q and ¢ > 0.

2. Let u = u(x,t) be the temperature of a body occupying the region B at the point =
and time t. Assume that

a. The flux density vector is given by Fourier’s law with a diffusion coefficient D, and
b. That there are neither sinks nor sources in B. (Thus heat energy is conserved.)

The assumptions imply that u satisfies the heat equation
uy — DAu = 0. (1)
Let the initial temperature distribution be
u(z,0) = f(2), (2)
and the temperature on the boundary at time ¢ be
ulg = gl.1). ®

The initial-boundary value problem (P;) for u comprises equation (1) along with the
conditions (2) and (3):
uy — DAu =0, forx € B andt >0,
(Py) { u(x,0) = f(x),
u‘ G = g(x,t).

3. If we prescribe the heat flux across () rather than the temperature on (), then the
boundary condition (3) is replaced by

Dl,u|c~2 = h(z,t). (4)

We thus have the initial-boundary value problem

uy — DAu =0, for x € B and t > 0,

(PQ) u(m7 O) = f(:]:),
Dyu|c~2 = h(z,1).



If, for example, the body is insulated, we have the “no-flux” boundary condition

Dyulg =0. (5)

. (Py) and (P») are typical initial-boundary value problems for a parabolic equation.
. Suppose that, as ¢ — oo, the temperature distribution achieves a time-independent
equilibrium w = w(z). As we’ve seen, w is harmonic in B:

Aw(z) =0, (6)

for x € B. It makes no sense to assign an initial value to w, but we can prescribe w on
the boundary:

wl, = g(a). (7)
We thus have the Dirichlet problem
b Aw =0, for x € B,
(Fs) w|, = g(@).

The boundary condition (7) is called the Dirichlet condition.

. Suppose that there is a time-independent heat source h(z) in the original model, and
that instead of u, we prescribe the heat flux on ). The long-term temperature equilib-
rium would then be governed by

—Aw = p(x), forxe B,
<P4>{ A © ®)

DVw|Q = (x)v

where ¢(z) = D~ !h(x). This is the Neumann problem for Poisson’s equation. The
condition (8) is a Neumann condition.

. You can combine the Dirichlet and Neumann conditions to get a mixed boundary
condition

a(z)w(x) + b(x)D,,w(:c)‘er = g(x).

. (P3) and (Py) are typical boundary value problems for elliptic equations.

. A thin, elastic membrane is stretched over a region B in R? which is bounded by a
smooth, closed curve (). The membrane is clamped along Q. A disturbance causes
small amplitude vibrations in the membrane. Let u = u(z,t) be the displacement from
equilibrium at z € B and time . We assume that u satisfies the wave equation

Ut — CQAU = 0, (9)



10.

11.

where ¢ > 0 is a constant and A is the 2-dimensional Laplacian. (If there were an
external force driving the vibrations, it would be represented by an inhomogeneity
on the right-hand side of the equation.) Since the the membrane is clamped on the
boundary,

@QZO. (10)

Since the equation is second-order in time, we need to prescribe both v and u; at t = 0.
We thus have the initial-boundary value problem for the wave equation

upy — c?Au=0, forz € Bandt >0,

u(,0) = f(z),
F5)\ we(z,0) = g(a),
u|Q =0.

(Ps) is a typical initial-boundary value problem for a hyperbolic equation.

Spatial domains are not always bounded. You might, for example, model vibrations on
a long string with a pure initial value problem for the wave equation:

Upt — CCUugy =0, for z € R and t > 0,
(Ps) § u(x,0) = f(z),
u(z,0) = g(z).

Another example is the Dirichlet problem in the upper half-plane:

(11)

( ){wmx—f—wyy:O, for x € R and y > 0,
7
w(z,0) = f(x).

You might wonder why we prescribe u and u; in the (Ps) but only w in (Pr). We do
this because (P7) is an elliptic problem modeling a time-independent equilibrium. We
have to think of y = 0 not as an “initial line” but as the boundary of the spatial region
y > 0. Thus (11) is a boundary condition, not one of a pair of initial conditions.



