
Problems and Equations

1. Let B be a bounded subset of R3 enclosed by the smooth surface Q. Let ν be the outer
unit normal to Q. Let

Q̃ = Q× [0,∞).

Thus (x, t) lies in Q̃ if x ∈ Q and t ≥ 0.

2. Let u = u(x, t) be the temperature of a body occupying the region B at the point x
and time t. Assume that

a. The flux density vector is given by Fourier’s law with a diffusion coefficient D, and

b. That there are neither sinks nor sources in B. (Thus heat energy is conserved.)

The assumptions imply that u satisfies the heat equation

ut −D∆u = 0. (1)

Let the initial temperature distribution be

u(x, 0) = f(x), (2)

and the temperature on the boundary at time t be

u
∣∣
Q̃

= g(x, t). (3)

The initial-boundary value problem (P1) for u comprises equation (1) along with the
conditions (2) and (3):

(P1)


ut −D∆u = 0, for x ∈ B and t > 0,
u(x, 0) = f(x),
u
∣∣
Q̃

= g(x, t).

3. If we prescribe the heat flux across Q rather than the temperature on Q, then the
boundary condition (3) is replaced by

Dνu
∣∣
Q̃

= h(x, t). (4)

We thus have the initial-boundary value problem

(P2)


ut −D∆u = 0, for x ∈ B and t > 0,
u(x, 0) = f(x),
Dνu

∣∣
Q̃

= h(x, t).



If, for example, the body is insulated, we have the “no-flux” boundary condition

Dνu
∣∣
Q̃

= 0. (5)

4. (P1) and (P2) are typical initial-boundary value problems for a parabolic equation.

5. Suppose that, as t → ∞, the temperature distribution achieves a time-independent
equilibrium w = w(x). As we’ve seen, w is harmonic in B:

∆w(x) = 0, (6)

for x ∈ B. It makes no sense to assign an initial value to w, but we can prescribe w on
the boundary:

w
∣∣
Q

= g(x). (7)

We thus have the Dirichlet problem

(P3)

{
∆w = 0, for x ∈ B,
w

∣∣
Q

= g(x).

The boundary condition (7) is called the Dirichlet condition.

6. Suppose that there is a time-independent heat source h(x) in the original model, and
that instead of u, we prescribe the heat flux on Q. The long-term temperature equilib-
rium would then be governed by

(P4)

{
−∆w = ϕ(x), for x ∈ B,
Dνw

∣∣
Q

= g(x), (8)

where ϕ(x) = D−1h(x). This is the Neumann problem for Poisson’s equation. The
condition (8) is a Neumann condition.

7. You can combine the Dirichlet and Neumann conditions to get a mixed boundary
condition

a(x)w(x) + b(x)Dνw(x)
∣∣
x∈Q

= g(x).

8. (P3) and (P4) are typical boundary value problems for elliptic equations.

9. A thin, elastic membrane is stretched over a region B in R2 which is bounded by a
smooth, closed curve Q. The membrane is clamped along Q. A disturbance causes
small amplitude vibrations in the membrane. Let u = u(x, t) be the displacement from
equilibrium at x ∈ B and time t. We assume that u satisfies the wave equation

utt − c2∆u = 0, (9)



where c > 0 is a constant and ∆ is the 2-dimensional Laplacian. (If there were an
external force driving the vibrations, it would be represented by an inhomogeneity
on the right-hand side of the equation.) Since the the membrane is clamped on the
boundary,

u
∣∣
Q̃

= 0. (10)

Since the equation is second-order in time, we need to prescribe both u and ut at t = 0.
We thus have the initial-boundary value problem for the wave equation

(P5)


utt − c2∆u = 0, for x ∈ B and t > 0,
u(x, 0) = f(x),
ut(x, 0) = g(x),
u
∣∣
Q̃

= 0.

10. (P5) is a typical initial-boundary value problem for a hyperbolic equation.

11. Spatial domains are not always bounded. You might, for example, model vibrations on
a long string with a pure initial value problem for the wave equation:

(P6)


utt − c2uxx = 0, for x ∈ R and t > 0,
u(x, 0) = f(x),
ut(x, 0) = g(x).

Another example is the Dirichlet problem in the upper half-plane:

(P7)
{

wxx + wyy = 0, for x ∈ R and y > 0,
w(x, 0) = f(x).

(11)

You might wonder why we prescribe u and ut in the (P6) but only w in (P7). We do
this because (P7) is an elliptic problem modeling a time-independent equilibrium. We
have to think of y = 0 not as an “initial line” but as the boundary of the spatial region
y > 0. Thus (11) is a boundary condition, not one of a pair of initial conditions.


