Eigenfunction Expansions 3

1. We can extend the notion of self-adjointness to regular boundary value problems of any order. Let L be an nth order, linear, differential operator

$$L = \sum_{k=0}^{n} a_k(x) D^k, \tag{1}$$

whose the coefficients a_k are smooth and complex-valued, with $a_n(x) \neq 0$ on [a, b]. Let B_1, \ldots, B_n be linear boundary operators of order at most n-1. Consider the boundary value problem

$$(P_0) \begin{cases} LX = \lambda X & \text{for } a < x < b, \\ B_i X = 0 & \text{for } i = 1, \dots, n. \end{cases}$$

Integration by parts yields

$$\int_{a}^{b} LX(x)\overline{Y}(x) dx = \mathcal{B}(X, \overline{Y}) + \int_{a}^{b} X(x)\overline{L^{*}Y(x)} dx, \tag{2}$$

where $\mathcal{B}(X, \bar{Y})$ represents the boundary terms and

$$L^*Y = \sum_{k=0}^{n} (-1)^k D^k(\bar{a}_k(x)Y), \tag{3}$$

is the formal adjoint of L. In terms of the inner product, this is

$$\langle LX, Y \rangle = \mathcal{B}(X, \bar{Y}) + \langle X, L^*Y \rangle. \tag{4}$$

2. If

$$L = L^*$$
, and $\mathcal{B}(X, \bar{Y}) = 0$,

for all X and Y in the domain of L (i.e. for all smooth X and Y satisfying the boundary conditions), then

$$\langle LX, Y \rangle = \langle X, LY \rangle.$$
 (5)

When this is the case, the problem is called *self-adjoint*.

- 3. The familiar results from the second-order case still pertain.
- **a**. The eigenvalues of a self-adjoint problem are real.
- **b.** Let (P_0) be self-adjoint, and $\lambda \neq \mu$ be eigenvalues. If X and Y are eigenvectors belonging to λ and μ respectively, then $\langle X, Y \rangle = 0$. (Thus the eigenspaces of λ and μ are orthogonal.) Each eigenspace can have dimension at most n.

c. Let (P_0) be self-adjoint, and have eigenvalues $\{\lambda_k\}$ with associated eigenspaces $\{E_{\lambda_k}\}$. Let \mathcal{O}_k be an orthonormal basis for E_{λ_k} . Then

$$\mathcal{O} = \bigcup_k \mathcal{O}_k,$$

is an orthonormal basis for $L^2[a, b]$.

4. Example: Let L be the Dirac operator,

$$L = \frac{1}{i} \frac{d}{dx},$$

and B the boundary operator

$$BX = X(0) - X(1).$$

The problem

$$(P_1) \begin{cases} LX = \lambda X & \text{for } 0 < x < 1, \\ BX = 0, \end{cases}$$

is self-adjoint.

5. The eigenvalues of (P_1) are

$$\lambda_k = 2\pi i k$$
 for $k = 0, \pm 1, \pm 2, \dots$

The eigenspaces are all one-dimensional, each with an orthonormal basis consisting of a single eigenfunction

$$e_k(x) = e^{2\pi i k x}.$$

Thus,

$$\mathcal{O} = \{e^{2\pi i k x}\}_{k \in \mathbf{Z}},$$

is an orthonormal basis of $L^2[0,1]$. A function $f \in L^2[0,1]$ has the Fourier expansion

$$f = \sum_{k = -\infty}^{\infty} \hat{f}(k)e_k,$$

where

$$\hat{f}(k) = \int_0^1 f(x)e^{-2\pi ikx} dx.$$