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Eigenfunction Expansions 2

Let [a,b] be a finite interval. Define the second-oder, linear differential operator
L = ay(x)D?* + a1 (2)D + ay,

where the a; are smooth and complex-valued, and as(z) # 0 on [a,b]. Let By and By
be linear boundary operators of at most the first order. If

LX = )X, fora<ax<hb,
(P BiX =0,
By X =0,
is self-adjoint, it is called a regular Sturm-Liouville problem. We can use such a problem
to generate an orthonormal basis for L?[a,b]. The recipe is
Find the eigenvalues {\,}.
For each eigenvalue, determine the eigenspace E) . (Note that dim Ey < 2.)

Find an orthonormal basis O,, of E} .

d. Since the problem is self-adjoint, the sets O,, are mutually orthogonal. Hence,

0=|J0n,

is itself an orthonormal set. For a regular Sturm-Liouville problem like (), one can
show that O is actually an orthonormal basis of L?[a, b]. Thus, if

0= {en}a

and f is in L?[a, b] then
f:Z<f7 en>en7

where equality is in the sense of L2.

. For fixed A, let X;(x,\) and Xa(x, A) be linearly independent solutions to the ODE

LX — X =0, (1)
on (a,b). Then every solution X (x, ) to (1) has the form

X(z,\) =1 X1 (z, ) + o Xo(x, M), (2)

C1
c= ,
C2

for constants ¢; and cy. Let



and B(A) the 2 x 2 matrix

| BiXi(\) BiXa()N)

B = By X1(A) B2Xa(A) | ®)

We apply the boundary operators to X. Since they are linear,

BlX()\) = ClBle()\) + CzBlXQ()\),

and
BQX()\) = ClBQXl()\) + CQBQXQ(/\).
Thus,
B1X()\)
Box (v | = POV (4)

. Proposition: The scalar ) is an eigenvalue if and only if
det B(\) = 0. (5)

Proof: Suppose that (5) holds for some A. This implies that there is a nonzero vector
c=[c1 ¢ such that
B(A)e=0. (6)

By (6),
X(z,\) = a1 X1 (z, A) + caXo(x, N,

satisfies the boundary conditions. And since ¢ # 0, X is nontrivial. Hence A is an
eigenvalue. To prove the converse, let A be an eigenvalue. Then by definition, there is a
nontrivial solution X (z, \) to (Py). This solution must have the form (2) for coefficients
c1 and co. Since X(z,\) is nontrivial, ¢ # 0. But as X (&, \) satisifes the boundary
conditions, ¢ must satisfy (6). Hence the matrix B(A) has a nontrivial kernel, which in
turn implies condition (5).

. The above proposition gives us a simple algebric procedure for finding the eigenvalues
of (Py). Note that the problem need not be self-adjoint. If the problem is self-adjoint,
we can confine our search for eigenvalues to the real line. It is sometimes possible
to simplify the search still further. Suppose, for example, that the problem is self-
adjoint, and that L = D?. Let )\ be an eigenvalue with the nontrivial eigenfunction X.
Integration by parts shows that

X7

A= — .
1X1l2

Thus the eigenvalues are nonpositive.



5. Example: Consider the self-adjoint problem

X" =)\X, for 0 <z <1,
X'(0) — X'(1) =0.

By the preceeding paragraph, we know that the eigenvalues are real and nonpositive.
We thus set

A\ = —k?,
for k > 0. The equation becomes
X"+ kX =0,
with general solution
c1 + cox for k =0,
o {cl coskxr + cosinkx for k > 0.

It is convenient to think of B as a function of k. When k = 0, we take as independent
solutions X7 = 1 and X5 — . Then

with
det B(0) = 0.

Thus A\g = 0 is an eigenvalue. Any eigenfunction of Ay must have the form X = ¢;+cox.
In order to satisfy the first boundary condition we must set co = 0. Hence the eigenspace
E,, is one-dimensional and has the function

as an orthonormal basis. For k #£ 0, we take as independent solutions X; = cos kx and
Xy =sinkx. In this case,

1 —cosk —sink

B(k) = ksink k(1 —cosk) |’

with
det B(k) = 2k(1 — cos k).

Thus the nonzero eigenvalues are

A\p = —4n’7%, n=1,2,3,...



The corresponding eigenfunctions must be of the form X = ¢y cos (2mnz)+cg sin (27nz).
We conclude that for n > 0, the eigenspace E), is two-dimensional with orthonormal
basis {c,(z), sn(z)}, where

cn() = V2 cos (2mnz),

and
Sn(x) = V2sin (2mnz).

Thus,
0= {C()vcla 51,C2,82,...,Cn, Sn, - - }

is an orthonormal basis for L?[0, 1].

. For problem (Py), you can use complex exponentials instead of sines and cosines. The
eigenfunction belonging to A\g = 0 is of course

For n > 0,

—2minx

Mt and  e_,(z) =e )

en(x) =€

form an orthonormal basis for the eigensapce E),. (When checking this, don’t forget
the complex conjugate in the inner product.) Thus,

O:{...,62,61,60,61,62,...}, (7)
is an orthonormal basis of [0,1]. If f lies in L?[0, 1],
f= 2 fmem, (8)

where

1
F(n) = {f, en) = / f(@)e 2 in® de. (9)

is the nth Fourier coefficent with respect to the basis (7). As usual, it should be
understood that (8) holds in the sense of L?[0,1], viz

| f— Z f(n)€n||2—>0 as k,m — oo.

n=—k



