
Eigenfunction Expansions 2

1. Let [a, b] be a finite interval. Define the second-oder, linear differential operator

L = a2(x)D2 + a1(x)D + a0,

where the ai are smooth and complex-valued, and a2(x) 6= 0 on [a, b]. Let B1 and B2

be linear boundary operators of at most the first order. If

(P0)


LX = λX, for a < x < b,
B1X = 0,

B2X = 0,

is self-adjoint, it is called a regular Sturm-Liouville problem. We can use such a problem
to generate an orthonormal basis for L2[a, b]. The recipe is

a. Find the eigenvalues {λn}.
b. For each eigenvalue, determine the eigenspace Eλn

. (Note that dim Eλn
≤ 2.)

c. Find an orthonormal basis On of Eλn
.

d. Since the problem is self-adjoint, the sets On are mutually orthogonal. Hence,

O =
⋃
n

On,

is itself an orthonormal set. For a regular Sturm-Liouville problem like (P0), one can
show that O is actually an orthonormal basis of L2[a, b]. Thus, if

O = {en},

and f is in L2[a, b] then
f =

∑
n

〈f , en〉 en,

where equality is in the sense of L2.

2. For fixed λ, let X1(x, λ) and X2(x, λ) be linearly independent solutions to the ODE

LX − λX = 0, (1)

on (a, b). Then every solution X(x, λ) to (1) has the form

X(x, λ) = c1X1(x, λ) + c2X2(x, λ), (2)

for constants c1 and c2. Let

c =

[
c1

c2

]
,



and B(λ) the 2× 2 matrix

B(λ) =
[

B1X1(λ) B1X2(λ)
B2X1(λ) B2X2(λ)

]
. (3)

We apply the boundary operators to X. Since they are linear,

B1X(λ) = c1B1X1(λ) + c2B1X2(λ),

and
B2X(λ) = c1B2X1(λ) + c2B2X2(λ).

Thus, [
B1X(λ)
B2X(λ)

]
= B(λ)c. (4)

3. Proposition: The scalar λ is an eigenvalue if and only if

det B(λ) = 0. (5)

Proof: Suppose that (5) holds for some λ. This implies that there is a nonzero vector
c = [ c1 c2 ]′ such that

B(λ)c = 0. (6)

By (6),
X(x, λ) = c1X1(x, λ) + c2X2(x, λ),

satisfies the boundary conditions. And since c 6= 0, X is nontrivial. Hence λ is an
eigenvalue. To prove the converse, let λ be an eigenvalue. Then by definition, there is a
nontrivial solution X(x, λ) to (P0). This solution must have the form (2) for coefficients
c1 and c2. Since X(x, λ) is nontrivial, c 6= 0. But as X(ξ, λ) satisifes the boundary
conditions, c must satisfy (6). Hence the matrix B(λ) has a nontrivial kernel, which in
turn implies condition (5).

4. The above proposition gives us a simple algebric procedure for finding the eigenvalues
of (P0). Note that the problem need not be self-adjoint. If the problem is self-adjoint,
we can confine our search for eigenvalues to the real line. It is sometimes possible
to simplify the search still further. Suppose, for example, that the problem is self-
adjoint, and that L = D2. Let λ be an eigenvalue with the nontrivial eigenfunction X.
Integration by parts shows that

λ = −‖X
′‖2

‖X‖2
.

Thus the eigenvalues are nonpositive.



5. Example: Consider the self-adjoint problem

(P1)


X ′′ = λX, for 0 < x < 1,
X(0)−X(1) = 0,

X ′(0)−X ′(1) = 0.

By the preceeding paragraph, we know that the eigenvalues are real and nonpositive.
We thus set

λ = −k2,

for k > 0. The equation becomes

X ′′ + k2X = 0,

with general solution

X =
{

c1 + c2x for k = 0,
c1 cos kx + c2 sin kx for k > 0.

It is convenient to think of B as a function of k. When k = 0, we take as independent
solutions X1 = 1 and X2 = x. Then

B(0) =

[
0 −1
0 0

]
,

with
detB(0) = 0.

Thus λ0 = 0 is an eigenvalue. Any eigenfunction of λ0 must have the form X = c1+c2x.
In order to satisfy the first boundary condition we must set c2 = 0. Hence the eigenspace
Eλ0 is one-dimensional and has the function

c0(x) ≡ 1,

as an orthonormal basis. For k 6= 0, we take as independent solutions X1 = cos kx and
X2 = sin kx. In this case,

B(k) =

[
1− cos k − sin k

k sin k k(1− cos k)

]
,

with
detB(k) = 2k(1− cos k).

Thus the nonzero eigenvalues are

λn = −4n2π2, n = 1, 2, 3, . . .



The corresponding eigenfunctions must be of the form X = c1 cos (2πnx)+c2 sin (2πnx).
We conclude that for n > 0, the eigenspace Eλn

is two-dimensional with orthonormal
basis {cn(x), sn(x)}, where

cn(x) =
√

2 cos (2πnx),

and
sn(x) =

√
2 sin (2πnx).

Thus,
O = {c0, c1, s1, c2, s2, . . . , cn, sn, . . .}

is an orthonormal basis for L2[0, 1].

6. For problem (P1), you can use complex exponentials instead of sines and cosines. The
eigenfunction belonging to λ0 = 0 is of course

e0(x) ≡ 1.

For n > 0,
en(x) = e2πinx and e−n(x) = e−2πinx,

form an orthonormal basis for the eigensapce Eλn
. (When checking this, don’t forget

the complex conjugate in the inner product.) Thus,

O = {. . . , e2, e1, e0, e1, e2, . . .}, (7)

is an orthonormal basis of [0, 1]. If f lies in L2[0, 1],

f =
∞∑

n=−∞
f̂(n)e2πinx, (8)

where

f̂(n) = 〈f , en〉 =
∫ 1

0

f(x)e−2πinx dx, (9)

is the nth Fourier coefficent with respect to the basis (7). As usual, it should be
understood that (8) holds in the sense of L2[0, 1], viz

‖ f −
m∑

n=−k

f̂(n)en ‖2 → 0 as k, m →∞.


