Eigenfunction Expansions 1

1. Example: Let u(z,t) be the density of a gas in a straight, narrow, cylindrical tube of
length 1. Let f be the initial density. Assume that the ends of the tube are plugged.
Thus u satisfies the initial-boundary value problem with “no-flux” boundary conditions:

up — kug, =0, forO0<ax<1,t>0,

u(a:,()) = f(a:),
PN 0,0 =0,
uz(1,8) =0
We separate variables:
u(x,t) = T(t)X(x)a (1)
and see that
T'(t) = \kT (), (2)

and
X"=MX, forO<z<l,

(P1) 4 X'(0) =0,
X'(1) =0,

for some constant A. Problem (P;) is called an eigenvalue problem. Let

d? D2

dz? — 7
and define the linear boundary operators
B X = X'(0),

and
BoX = X'(1).
With this notation, (P;) is

LX =)X, forO<z<1,
(P1){ B1X =0,
By X =0.

Since the first boundary condition involves X only at x = 0, and the second, only at
x = 1, the boundary conditions are called separated.

2. Example: Suppose now u(zx,t) represents the temperature of a thin, insulated, wire
ring of circumference 1. Here, the spatial variable x represents arclength along the



ring, measured widdershins (counterclockwise). We thus have the periodic boundary

conditions
u(0,t) = u(1,1), (3)

and
Uz (0,t) = ug(1,¢). (4)

With the initial temperature distribution f, we have the initial boundary value problem

Up — kg, = 0, forO0<ax<1,t>0,
u(x,O) = f(x)v

u(0,t) —u(1,t) =0,

Uz (0,8) —uy(1,t) = 0.

(P2)

We set
u(z,t) =T(t) X (),
and obtain
T'(t) = AKT (1), (5)
and
X" = )\X, for 0 <z <1,

(Py) { X(0) — X(1) =0,
X'(0) — X'(1) =0,

for some constant \. If we set

and define the linear boundary operators
B1X = X(0) — (1),

and
By X = X'(0) —'(1),

(Ps3) becomes
LX =)X, forO0<zx <1,
(P3){ B1X =0,
By X =0.

3. We'll say that a boundary operator B; is of order k if it contains derivatives up to but
not exceeding the kth. In the first example, the both boundary operators are of order
1. In the second, B is of order 0 and B; of order 1.

4. Let [a,b] be a finite interval. Define the second-oder, linear differential operator

L = ay(2)D? + a1(z)D + aq,
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11.

12.

where the a; are smooth and complex-valued, and as(z) # 0 on [a,b]. Let By and Bs
be linear boundary operators of at most the first order. Consider the problem

LX = )X, fora<ax<hb,
(Py){ B1X =0,
B> X =0.

Note: The function X = 0 is a solution (called the trivial solution) to (Py). A solution
X that is not identically zero is called nontrivial.

Note: We haven’t been specific about the domain of L, that is, the class of functions
X on which L operates. We require that

X, X’ and X" be in L?[a, b],
B X =BX =0.

For practical purposes, you don’t have to worry about (a). Just remember that func-
tions in the domain of L have to satisfy the boundary conditions.

Linear algebraic digression: Let A = (a;;) be a complex, n x n matrix, and A a
scalar. If the equation
AX = )\X, (6)

has a solution X # 0, then X is an eigenvalue of A. Any vector X satisfying (6) is
an eigenvector belonging to A. Note that X = 0 (i.e. the zero vector in C") is an
eigenvector belonging to every eigenvalue.

Proposition: The set of eigenvectors belonging to an eigenvalue A is a linear subspace
of C". (It is called the eigenspace of \.)

Let (, ) be the standard inner product on C". Let A* = (@j;; ) and be the adjoint of
A. Then
(AX,Y)= (X, AY), (7)

for all X and YV in C".

A is called self-adjoint if A = A*. If A is self-adjoint then (7) becomes
(AX,Y)=(X, AY), (8)

for all X and Y in C”. This can be used to prove two important propositions:

Proposition: The eigenvalues of a self-adjoint matrix are real.

Proposition: Let A ne a self-adjoint matrix. If X and Y be eigenvectors belonging
respectively to the distinct eigenvalues p and A, then (X, Y) = 0. Thus eigenspaces of
distinct eigenvalues of the self-adjoint matrix A are orthogonal.
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Definition: Consider (Py) with A fized.
LX = )X, fora<ax<hb,
(Py){ B1X =0,
By X = 0.

If there is a nontrival solution to this problem, then \ is called an eigenvalue. Any
solution is called an eigenfunction belonging to A\. Note that the trivial solution X =0
is an eigenfunction of every eigenvalue.

Proposition: The set of eigenfunctions belonging to an eigenvalue A forms a vector
space. (This is called the eigenspace of . It is a subspace of L?[a,b].)

Self-Adjoint Problems: Integration by parts yields

b b
/ LX(2)Y (z)dx = B(X,Y) + / X (x)L*Y (z) dx, 9)
where B(X,Y) represents the boundary terms and
L*Y = (aY)" — (a1Y) + aoY, (10)
is the formal adjoint of L. If {, ) is the L? inner product on [a, b], then (9) becomes
(LX,Y)=B(X,Y)+ (X, L*Y). (11)
If

L=L* and B(X,Y)=0,
for all X and Y in the domain of L, then
(LX,Y)=(X,LY). (12)
When this is the case, the problem is called self-adjoint.

Example: Problems (P;) and (Ps) are self-adjoint.
Proposition: The eigenvalues of a self-adjoint problem are real.

Proposition: Let (P;) be self-adjoint. and let A\ # u be eigenvalues. If Y and Z are
eigenvectors belonging to A and p respectively, then (Y, Z) = 0. (Thus the eigenspaces
of A and p are orthogonal.)
If the coefficient functions a; are real-valued then L* = L if and only if

LX = (GQX/)/ -+ a()X.
We usually set a; = —p and ag = ¢ and write the operator in Sturm-Liouville form:

LX = —(pX') + ¢X.



