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1. Example: Let u(x, t) be the density of a gas in a straight, narrow, cylindrical tube of
length 1. Let f be the initial density. Assume that the ends of the tube are plugged.
Thus u satisfies the initial-boundary value problem with “no-flux” boundary conditions:

(P0)


ut − kuxx = 0, for 0 < x < 1, t > 0,
u(x, 0) = f(x),
ux(0, t) = 0,

ux(1, t) = 0.

We separate variables:
u(x, t) = T (t)X(x), (1)

and see that
T ′(t) = λkT (t), (2)

and

(P1)


X ′′ = λX, for 0 < x < 1,
X ′(0) = 0,

X ′(1) = 0,

for some constant λ. Problem (P1) is called an eigenvalue problem. Let

L =
d2

dx2
= D2,

and define the linear boundary operators

B1X = X ′(0),

and
B2X = X ′(1).

With this notation, (P1) is

(P1)


LX = λX, for 0 < x < 1,
B1X = 0,

B2X = 0.

Since the first boundary condition involves X only at x = 0, and the second, only at
x = 1, the boundary conditions are called separated.

2. Example: Suppose now u(x, t) represents the temperature of a thin, insulated, wire
ring of circumference 1. Here, the spatial variable x represents arclength along the



ring, measured widdershins (counterclockwise). We thus have the periodic boundary
conditions

u(0, t) = u(1, t), (3)

and
ux(0, t) = ux(1, t). (4)

With the initial temperature distribution f , we have the initial boundary value problem

(P2)


ut − kuxx = 0, for 0 < x < 1, t > 0,
u(x, 0) = f(x),
u(0, t)− u(1, t) = 0,

ux(0, t)− ux(1, t) = 0.

We set
u(x, t) = T (t)X(x),

and obtain
T ′(t) = λkT (t), (5)

and

(P3)


X ′′ = λX, for 0 < x < 1,
X(0)−X(1) = 0,

X ′(0)−X ′(1) = 0,

for some constant λ. If we set
L = D2,

and define the linear boundary operators

B1X = X(0)− v(1),

and
B2X = X ′(0)− v′(1),

(P3) becomes

(P3)


LX = λX, for 0 < x < 1,
B1X = 0,

B2X = 0.

3. We’ll say that a boundary operator Bi is of order k if it contains derivatives up to but
not exceeding the kth. In the first example, the both boundary operators are of order
1. In the second, B1 is of order 0 and B1 of order 1.

4. Let [a, b] be a finite interval. Define the second-oder, linear differential operator

L = a2(x)D2 + a1(x)D + a0,



where the ai are smooth and complex-valued, and a2(x) 6= 0 on [a, b]. Let B1 and B2

be linear boundary operators of at most the first order. Consider the problem

(P4)


LX = λX, for a < x < b,
B1X = 0,

B2X = 0.

5. Note: The function X ≡ 0 is a solution (called the trivial solution) to (P4). A solution
X that is not identically zero is called nontrivial.

6. Note: We haven’t been specific about the domain of L, that is, the class of functions
X on which L operates. We require that

a. X, X ′ and X ′′ be in L2[a, b],

b. B1X = B2X = 0.

For practical purposes, you don’t have to worry about (a). Just remember that func-
tions in the domain of L have to satisfy the boundary conditions.

7. Linear algebraic digression: Let A = (aij) be a complex, n × n matrix, and λ a
scalar. If the equation

AX = λX, (6)

has a solution X 6= 0, then λ is an eigenvalue of A. Any vector X satisfying (6) is
an eigenvector belonging to λ. Note that X = 0 (i.e. the zero vector in Cn) is an
eigenvector belonging to every eigenvalue.

8. Proposition: The set of eigenvectors belonging to an eigenvalue λ is a linear subspace
of Cn. (It is called the eigenspace of λ.)

9. Let 〈 , 〉 be the standard inner product on Cn. Let A∗ = ( aji ) and be the adjoint of
A. Then

〈AX , Y 〉 = 〈X , A∗Y 〉 , (7)

for all X and Y in Cn.

10. A is called self-adjoint if A = A∗. If A is self-adjoint then (7) becomes

〈AX , Y 〉 = 〈X , AY 〉 , (8)

for all X and Y in Cn. This can be used to prove two important propositions:

11. Proposition: The eigenvalues of a self-adjoint matrix are real.

12. Proposition: Let A ne a self-adjoint matrix. If X and Y be eigenvectors belonging
respectively to the distinct eigenvalues µ and λ, then 〈X , Y 〉 = 0. Thus eigenspaces of
distinct eigenvalues of the self-adjoint matrix A are orthogonal.



13. Definition: Consider (P4) with λ fixed .

(P4)


LX = λX, for a < x < b,
B1X = 0,

B2X = 0.

If there is a nontrival solution to this problem, then λ is called an eigenvalue. Any
solution is called an eigenfunction belonging to λ. Note that the trivial solution X ≡ 0
is an eigenfunction of every eigenvalue.

14. Proposition: The set of eigenfunctions belonging to an eigenvalue λ forms a vector
space. (This is called the eigenspace of λ. It is a subspace of L2[a, b].)

15. Self-Adjoint Problems: Integration by parts yields∫ b

a

LX(x)Ȳ (x) dx = B(X, Ȳ ) +
∫ b

a

X(x)L∗Y (x) dx, (9)

where B(X, Ȳ ) represents the boundary terms and

L∗Y = (ā2Y )′′ − (ā1Y )′ + ā0Y, (10)

is the formal adjoint of L. If 〈 , 〉 is the L2 inner product on [a, b], then (9) becomes

〈LX , Y 〉 = B(X, Ȳ ) + 〈X , L∗Y 〉 . (11)

16. If
L = L∗, and B(X, Ȳ ) = 0,

for all X and Y in the domain of L, then

〈LX , Y 〉 = 〈X , LY 〉 . (12)

When this is the case, the problem is called self-adjoint.

17. Example: Problems (P1) and (P3) are self-adjoint.

18. Proposition: The eigenvalues of a self-adjoint problem are real.

19. Proposition: Let (P4) be self-adjoint. and let λ 6= µ be eigenvalues. If Y and Z are
eigenvectors belonging to λ and µ respectively, then 〈Y , Z〉 = 0. (Thus the eigenspaces
of λ and µ are orthogonal.)

20. If the coefficient functions ai are real-valued then L∗ = L if and only if

LX = (a2X
′)′ + a0X.

We usually set a2 = −p and a0 = q and write the operator in Sturm-Liouville form:

LX = −(pX ′)′ + qX.


