
Calculus of Variations 6: Hamilton’s Principle

1. Start with a single particle of mass m, with position

q(t) = (q1(t), q2(t), q3(t)), (1)

velocity v(t) = q̇(t) and acceleration a(t) = q̈(t) at time t. Suppose that the force
F = (F1, F2, F3) acting the on the particle is conservative, with potential U(q). Then

F = −∇U, (2)

and Newton’s second law is

∂U

∂qk
+ mq̈k = 0, k = 1, 2, 3. (3)

Think of the particle as a mechanical “system.” The state, or configuration of the
system at time t is q(t). The set C of possible configurations is called the configuration
space. In this case, C = R3. The time-evolution of the configuration is governed by the
system of equations (3).

2. Suppose that between times a and b, the particle traces a trajectory q in C with end-
points

q(a) = α and q(b) = β. (4)

The potential energy of the particle is U(q), and its kinetic energy

T (q̇) =
1
2
m|q̇|2 =

1
2
m(q̇2

1 + q̇2
2 + q̇2

3). (5)

Consider the action functional

J(q) =
∫ b

a

(T − U) dt

=
∫ b

a

[
1
2
m(q̇2

1 + q̇2
2 + q̇2

3)− U(q1, q2, q3)
]

dt, (6)

defined on a domain D of smooth curves q satisfying the boundary conditions (4). The
class A of admissible variations consists of smooth curves h(t) = (h1(t), h2(t), h3(t))
that vanish at a and b. By the usual steps, the extremizing condition

δJ(q, h) = 0, for all h ∈ A, (7)

leads to the Euler-Lagrange equations

∂L

∂qk
− d

dt

∂L

∂q̇k
= 0, k = 1, 2, 3, (8)



where the Lagranigian is L = T − U . Note that Lqk
= −Uqk

and Lq̇k
= mq̇k. Plug

these into (8) to get
∂U

∂qk
+ mq̈k = 0, k = 1, 2, 3, (9)

which are Newton’s equations. Thus, you could say that

a. The particle’s trajectory q(t) through R3 is determined by Newton’s equations.

Though you might prefer to say that

b. The mechanical system’s trajectory q(t) through the configuration space C is an
extremal of the action functional.

This second characterization is a crude version of Hamilton’s principle, a variational
generalization of Newton’s second law.

3. It is important to note that q1, . . . , qn are not necessarily the rectangular coordinates of
a particle, but rather a set of quantities that describe the state of a mechanical system.
Thus the qk are called generalized coordinates, and the q̇k the generalized velocities.
As pointed out above, for the Lagrangian L in (6), Lq̇k

= mq̇k. For this reason, the
quantities

pk =
∂L

∂q̇k
, k = 1, . . . , n, (10)

are called the generalized momenta. And since Lqk
= −Uqk

, the Lqk
are called the

generalized forces. The number n of generalized coordinated is called the number of
degrees of freedom of the system.

4. Example: Consider a pendulum with string of length Λ and negligible mass and and
a bob of mass m. As usual, θ is the angle made by the string and the pendulum. The
kinetic energy is

T =
1
2
m(Λθ̇)2,

and the potential,
U = mgΛ(1− cos θ).

Hence the Lagrangian is

L(θ, θ̇) =
1
2
m(Λθ̇)2 −mgΛ(1− cos θ). (11)

By Hamilton’s principle, the equation of motion is

∂L

∂θ
− d

dt

∂L

∂θ̇
= 0,

which reduces to
θ̈ +

g

Λ
sin θ = 0.



In this example the generalized coordinate is θ, the generalized velocity θ̇, the general-
ized momentum

p =
∂L

∂θ̇
= mΛ2θ̇,

and the generalized force
∂L

∂θ
= −mgΛ sin θ.

We take θ to be dimensionless. Note that the generalized velocity, momentum and
force do not have the dimensions of their standard counterparts.

5. Since the Lagrangian in the previous example does not depend explicitly on time, the
Hamiltonian

H = −L + θ̇ Lθ̇

=
1
2
m(Lθ̇)2 + mgL(1− cos θ)

= T + U. (12)

is a first integral. Thus the total energy T +U is constant, i.e. the energy is conserved.

6. Consider the planar motion of a body of mass m subject to the gravitational attraction
F created by a body of mass M fixed at the origin. Let x = (x1, x2) be the position of
former body. Then

F = −GMm

|x|3
x.

The potential for the force field F is

U(x) =
GMm

|x|
, (13)

and the kinetic energy

T (ẋ) =
1
2
m|ẋ|2. (14)

We can make things easier by introducing polar coordinates:

x1 = r cos θ and x2 = r sin θ.

In terms of r and θ, the potential energy is

U = U(r) =
GMm

r
, (15)

and the kinetic,

T = T (r, ṙ, θ̇) =
1
2
m(ṙ2 + r2θ̇2). (16)



The Lagrangian is

L(r, ṙ, θ̇) =
1
2
m(ṙ2 + r2θ̇2)− GMm

r
. (17)

According to Hamilton’s principle, the equations of motion are
∂L

∂r
− d

dt

∂L

∂ṙ
= 0,

∂L

∂θ
− d

dt

∂L

∂θ̇
= 0,

or 
mrθ̇2 − GMm

r2
− d

dt
(mṙ) = 0,

− d

dt
mr2θ̇ = 0.

In this example, the system has two degrees of freedom. The generalized coordinates
are r and θ, the generalized velocities ṙ and θ̇, and the generalized momenta Lṙ = mrθ̇2

and Lθ̇ = mr2θ̇.

7. Since the Lagrangian does not depend explicitly on time, the Hamiltonian

H = −L + ṙ Lṙ + θ̇ Lθ̇

=
1
2
m(ṙ2 + r2θ̇2) +

GMm

r

= T + U. (18)

is a first integral. Thus the total energy T +U is constant, i.e. the energy is conserved.


