Linearity, Superposition and Classification

1. A partial differential operator (PDO) L is linear if for any functions u and v and and scalars c,

$$L[u+cv] = Lu + cLv.$$

If L is a linear PDO, the equation

$$Lu = f$$

is homogeneous if $f \equiv 0$, and inhomogeneous otherwise. The *order* of a partial differential equation is the order of the highest derivative appearing in it. The wave, heat and Laplace equations are second-order, linear, homogeneous partial differential equations. The inviscid Burgers' equation

$$u_t + uu_x = 0, (1)$$

is a first-order, nonlinear PDE. The Korteweg-deVries (KdV) equation

$$u_t + uu_x + u_{xxx} = 0, (2)$$

is third-order, nonlinear.

2. Superposition: If u_1, \ldots, u_n satisfy the linear, homogeneous equation

$$Lv = 0, (3)$$

then any linear combination $u = c_1u_1 + \cdots + c_nu_n$ also satisfies it.

3. Extensions: If $\{u_k\}_{k=1}^{\infty}$ satisfy (3) and

$$u = \sum_{k=1}^{\infty} c_k u_k,$$

converges "well enough," then u also satisfies (3). If $u(x,\alpha)$ satisfy (3) for all α in some interval I and

$$u(x) = \int_{I} c(\alpha)u(x,\alpha) d\alpha,$$

converges well enough, then u also satisfies (3).

4. Consider second-order, linear PDO in two independent variables. Associate with a t-derivative the symbol τ , with an x-derivative ξ and with a y-derivative η . The heat operator is

$$H = \frac{\partial}{\partial t} - k\Delta,$$

where k > 0. We thus associate with it the symbol $\tau - k\xi^2$, suggesting a parabola in the $\xi\tau$ -plane. For this reason, the heat operator is called parabolic. The heat equation is a parabolic PDE. The Laplacian

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2},$$

with symbol $\xi^2 + \eta^2$. This suggests an ellipse (a circle in this case) in the $\xi\eta$ -plane. Thus the Laplacian is an elliptic PDO. Laplace's equation is an elliptic PDE. Finally, the wave operator

$$\frac{\partial^2}{\partial t^2} - c^2 \frac{\partial^2}{\partial x^2},$$

has symbol $\tau^2-c^2\xi^2$ and is thus a hyperbolic operator. The wave equation is a hyperbolic PDE.

- 5. We won't go into the details of classification, but there are a few points to bear in mind:
- a. Parabolic equations govern phenomena (e.g. diffusion) characterized by smoothing, spreading flow. The heat operator is the archetypal parabolic operator.
- **b.** Elliptic equations govern equilibrium, energy-minimizing states. The Laplacian Δ is the archetypal elliptic operator.
- **c.** Hyperbolic equations govern "distrubance preserving" phenomena such as travelling waves and shocks. The D'Alembertian is the archetypal hyperbolic operator.
- **d**. Many PDOs (or PDEs) do not fall into one of the three categories. For example, the Tricomi operator (from gas dynamics)

$$L = y \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2},$$

is hyperbolic for y < 0 and elliptic for y > 0.

- **e**. Classification is harder with more independent variables, with higher-order PDE and with systems of equations.
- f. There are various refinements and extensions of the linear-nonlinear, homogeneous-inhomogeneous, parabolic-elliptic-hyperbolic classifications. You might, for example, have a "quasilinear elliptic" equation, or a system of equations that is "symmetric hyperbolic." The inviscid Burgers equation (1) is an example of a first-order, quasilinear, scalar conservation law. Since the KdV equation (2) is nonlinear and admits wave solutions, it is sometimes referred to as a nonlinear wave equation.