1. Let X be a linear space over \mathbf{R} equipped with norm $\| \|$. A real-valued functional J on X is just a function mapping X to \mathbf{R} . We write

$$J: X \mapsto \mathbf{R}.$$
 (1)

The set \mathcal{D} of points $x \in X$ for which J(x) is defined is called the *domain* of J. Instead of (1), you can write

$$J: \mathcal{D} \mapsto \mathbf{R}$$
.

or

$$J: \mathcal{D} \subset X \mapsto \mathbf{R}$$
.

if you wish to advertise the role of the domain in the defintion of J.

2. Example: Let $J: C[0,1] \mapsto \mathbf{R}$ by

$$J(x) = \int_0^1 x(t)e^{-t} dt.$$

3. Example: Let $J:C^1[a,b]\mapsto \mathbf{R}$ by

$$J(x) = \int_a^b \dot{x}(t)^2 dt.$$

4. Example: Define the functional J on the domain

$$\mathcal{D} = \{ y \in C^1[0, 1] \mid y(0) = 0, \ y(1) = 1 \},\$$

by

$$J(y) = \int_0^1 \sqrt{1 + y'(x)^2} \, dx. \tag{2}$$

J(y) is the length of a smooth curve y = y(x) drawn from (0,0) to (1,1).

5. Many of the funtionals in the calculus of variations are of the form

$$J(y) = \int_{a}^{b} L(x, y(x), y'(x)) dx,$$
 (3)

for y defined on some domain $\mathcal{D} \subseteq C^1[a,b]$. The function L is called the Lagrangian.

6. Let $J: \mathcal{D} \subset X \mapsto \mathbf{R}$ be a functional. A point $x^* \in \mathcal{D}$ is a local minimizer of J if there is an r > 0 such that $J(x^*) \leq J(x)$ for all $x \in \mathcal{D} \cap B(x^*, r)$. The number $J(x^*)$ is a local minimum of J.

7. Let f be a smooth function taking \mathbf{R}^n to \mathbf{R} . The derivative of f at $x \in \mathbf{R}^n$ in the direction $h \in \mathbf{R}^n$ is

$$D_h f(x) = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon h) - f(x)}{\varepsilon}$$
$$= \frac{d}{d\varepsilon} f(x + \varepsilon h) \Big|_{\varepsilon = 0}.$$
 (4)

Looking to (4), we define the $G\hat{a}teaux\ variation$ (or first variation, or Gâteaux derivative) of the functional J at $x \in \mathcal{D}$ in the direction h to be

$$\delta J(x,h) = \frac{d}{d\varepsilon} J(x + \varepsilon h) \Big|_{\varepsilon = 0}.$$
 (5)

Don't worry about the name and notation. The Gâteaux variation is just a directional derivative. It would be perfectly reasonable to write $D_h J(x)$ instead of $\delta J(x, h)$.

- 8. You have to take some care in the choice of directions h used in the calculation of the Gâteuax variation. By the definition (4), you may only take those vectors $h \in X$ for which $x + \varepsilon h$ lies in \mathcal{D} for ε small. Such vectors are called admissible variations. For a functional J, we denote by \mathcal{A} its class of admissible variations.
- **9.** At a *critical point* x, of a smooth function f, the derivative in every direction is zero: Thus,

$$D_h f(x) = 0$$
, for all h in \mathbf{R}^n . (6)

The same notion appears in the calculus of variations, though it goes by a different name. At an extremal $x \in \mathcal{D}$ of a functional J,

$$\delta J(x,h) = 0$$
, for all h in \mathcal{A} . (7)

The functional J is said to be stationary at the extremal x.

- 10. In calculus, you learned to seek the local minimizers of f among its critical points. In the calculus of variations, one seeks the local minimizers of a functional J among its extremals. You find those extremals by solving (6) for x.
- 11. Here is a summary of the correspondences between the ideas, terminology and notation of the calculus of variations (on the left) and those of calculus (on the right).

A functional $J: \mathcal{D} \subset X \mapsto \mathbf{R} \iff$ A function $f: \mathbf{R}^n \mapsto \mathbf{R}$ An admissible variation $h \in \mathcal{A} \iff$ A direction vector $h \in \mathbf{R}^n$ The Gâteaux variation $\delta J(x,h) \iff$ The directional derivative $D_h f(x)$ An extremal $x \in \mathcal{D}$ of $J \iff$ A critical point $x \in \mathbf{R}^n$ of f