## Advanced Calculus

1. **Definition:** The Cartesian product  $A \times B$  of sets A and B is

$$A \times B = \{(a, b) | a \in A, b \in B\}.$$

This generalizes in the obvious way to higher Cartesian products:

$$A_1 \times \cdots \times A_n = \{(a_1, \dots, a_n) | a_1 \in A_1, \dots, a_n \in A_n\}.$$

- 2. Example: The real line  $\mathbf{R}$ , the plane  $\mathbf{R^2} = \mathbf{R} \times \mathbf{R}$ , the *n*-dimensional real vector space  $\mathbf{R^n}$ ,  $\mathbf{R} \times [\mathbf{0}, \mathbf{T}]$ ,  $\mathbf{R^n} \times [\mathbf{0}, \mathbf{T}]$  etc.
- **3. Definition:** The dot product (or inner or scalar product) of vectors  $x = (x_1, \ldots, x_n)$  and  $y = (y_1, \ldots, y_n)$  in  $\mathbf{R}^{\mathbf{n}}$  is

$$x \cdot y = \sum_{i=1}^{n} x_i y_i.$$

4. **Definition:** The magnitude (or 2-norm) of a vector  $x = (x_1, \ldots, x_n)$  in  $\mathbf{R}^n$  is

$$|x| = \left[\sum_{i=1}^{n} x_i^2\right]^{\frac{1}{2}} = (x \cdot x)^{\frac{1}{2}}.$$

**5. Definition:** We write  $f: A \mapsto B$  if f is a function whose domain is a subset of A and whose range is a subset of B. Let

$$x = (x_1, \dots, x_n)$$

be a point in  $\mathbf{R}^{\mathbf{n}}$ . So, if  $f(x) = f(x_1, \dots, x_n)$  is a function that has its domain in  $\mathbf{R}^{\mathbf{n}}$ , we write

$$f: \mathbf{R^n} \mapsto \mathbf{R}.$$

So, for example, if

$$f(x_1, x_2, x_3, x_4) = x_2 x_4 \sin(x_1^2 + x_3^2),$$

then

$$f: \mathbf{R}^4 \mapsto \mathbf{R}.$$

We say that f takes  $\mathbb{R}^4$  to  $\mathbb{R}$ .

**6.** This notion is easily generalized to functions from  $\mathbf{R^n}$  to  $\mathbf{R^m}$ . Let  $x \in \mathbf{R^n}$  and  $f_1(x), \ldots, f_m(x)$  be functions taking  $\mathbf{R^n}$  to  $\mathbf{R}$ . Then we can define a function

$$f: \mathbf{R^n} \mapsto \mathbf{R^m},$$

$$f(x) = (f_1(x), \dots, f_m(x)).$$

7. Example: For  $t \in \mathbf{R}$ , let  $f_1(t) = \cos t$ ,  $f_2(t) = \sin t$  and  $f: \mathbf{R} \mapsto \mathbf{R}^2$  by

$$f(t) = (f_1(t), f_2(t)) = (\cos t, \sin t).$$

As t ranges through the real numbers, f(t) traces the unit circle counterclockwise in  $\mathbb{R}^2$ .

8. Let  $F_i: \mathbf{R^n} \to \mathbf{R}$  for  $i = 1, \dots, n$ . Then

$$F(x) = (F_1(x), \dots, F_n(x)),$$

defines a vector field on  $\mathbf{R^n}$ . In other words,  $F(x) : \mathbf{R^n} \mapsto \mathbf{R^n}$ . So, for example, a mass M at the origin (0,0,0) in  $\mathbf{R^3}$  creates a gravitational field

$$F(x) = -\frac{GM}{|x|^3} x,$$

at  $x = (x_1, x_2, x_3)$ . So F is a vector field on  $\mathbb{R}^3$ .

**9. Definition:** Let  $f: \mathbf{R^n} \mapsto \mathbf{R}$ . The gradient of f at x is the vector

$$\nabla f(x) = (f_{x_1}(x), \dots, f_{x_n}(x)),$$

where

$$f_{x_i} = \frac{\partial f}{\partial x_i}.$$

10. Definition: Let  $F: \mathbf{R^n} \mapsto \mathbf{R^n}$  be a vector field on  $\mathbf{R^n}$  and  $f: \mathbf{R^n} \mapsto \mathbf{R}$ . If

$$-\nabla f(x) = F(x),$$

then f is a potential function (or simply, a potential) for F.

11. Let x and h be vectors in  $\mathbb{R}^n$ . Let  $f : \mathbb{R}^n \to \mathbb{R}$ . Recall that the derivative of f at x in the direction h is

$$D_h f(x) = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon h) - f(x)}{\varepsilon} = \frac{d}{d\varepsilon} f(x + \varepsilon h) \Big|_{\varepsilon = 0}.$$

According to Taylor's theorem,

$$f(x + \varepsilon h) = f(x) + \nabla f(x) \cdot (\varepsilon h) + O(\varepsilon^2).$$

Therefore,

$$D_h f(x) = \lim_{\varepsilon \to 0} \frac{f(x + \varepsilon h) - f(x)}{\varepsilon} = \nabla f(x) \cdot h.$$

12. Let F be a vector field on  $\mathbb{R}^n$ . Thus  $F : \mathbb{R}^n \mapsto \mathbb{R}^n$  by

$$F(x) = (F_1(x), \dots, F_n(x)).$$

The divergence of the vector field F at x is

$$\operatorname{div} F(x) = \sum_{i=1}^{n} \frac{\partial F_i(x)}{\partial x_i}.$$

The divergence measures the infinitesimal flux of the vector field. If  $\operatorname{div} F(x)$  is positive, then the net flow of the vector field is *out* of the point x. Note that  $\operatorname{div} F : \mathbf{R}^{\mathbf{n}} \mapsto \mathbf{R}$ . By the same token, if  $f : \mathbf{R}^{\mathbf{n}} \mapsto \mathbf{R}$ , then  $\nabla f$  is a vector field taking  $\mathbf{R}^{\mathbf{n}}$  to  $\mathbf{R}^{\mathbf{n}}$ .

13. Let  $f: \mathbf{R^n} \mapsto \mathbf{R}$  and  $F: \mathbf{R^n} \mapsto \mathbf{R^n}$ . Then  $fF: \mathbf{R^n} \mapsto \mathbf{R^n}$  and

$$\operatorname{div}(fF) = \nabla f \cdot F + f \operatorname{div} F. \tag{1}$$

**14**. Let

$$dx = dx_1 \cdots dx_n$$

be the *n*-dimensional volume differential. The integral of  $f: \mathbf{R^n} \mapsto \mathbf{R}$  over  $B \subseteq \mathbf{R^n}$  is denoted

$$\int_{B} f(x_1, \dots, x_n) dx_1 \cdots dx_n = \int_{B} f(x) dx.$$

15. Let Q be a smooth, closed surface in  $\mathbf{R}^{\mathbf{n}}$  enclosing a region B, with surface area differential dS. (So if n=3, then Q really is a surface and dS the surface area differential. If n=2, then Q is a closed curve and dS the arclength differential on Q.) Let  $\nu=\nu(x)$  be the outer unit normal to Q at x. Let  $F: \mathbf{R}^{\mathbf{n}} \to \mathbf{R}^{\mathbf{n}}$  be a smooth vector field. The divergence theorem relates the integral over B to a surface integral over Q:

$$\int_Q F \cdot \nu \, dS = \int_B \operatorname{div} F \, dx.$$

16. Integration by parts: Let F be a vector field on  $\mathbb{R}^n$  and  $f: \mathbb{R}^n \mapsto \mathbb{R}$ . Then

$$\int_{B} f \operatorname{div} F \, dx = \int_{B} \left[ \operatorname{div} \left( f F \right) - F \cdot \nabla f \right] \, dx$$

$$= \int_{B} \operatorname{div} \left( f F \right) dx - \int_{B} F \cdot \nabla f \, dx$$

$$= \int_{Q} f F \cdot \nu \, dS - \int_{B} F \cdot \nabla f \, dx.$$