
Advanced Calculus

1. Definition: The Cartesian product A×B of sets A and B is

A×B = {(a, b)| a ∈ A, b ∈ B}.

This generalizes in the obvious way to higher Cartesian products:

A1 × · · · ×An = {(a1, . . . , an)| a1 ∈ A1, . . . , an ∈ An}.

2. Example: The real line R, the plane R2 = R×R, the n-dimensional real vector space
Rn, R× [0,T], Rn × [0,T] etc.

3. Definition: The dot product (or inner or scalar product) of vectors x = (x1, . . . , xn)
and y = (y1, . . . , yn) in Rn is

x · y =
n∑

i=1

xiyi.

4. Definition: The magnitude (or 2-norm) of a vector x = (x1, . . . , xn) in Rn is

|x| =

[
n∑

i=1

x2
i

] 1
2

= (x · x)
1
2 .

5. Definition: We write f : A 7→ B if f is a function whose domain is a subset of A and
whose range is a subset of B. Let

x = (x1, . . . , xn)

be a point in Rn. So, if f(x) = f(x1, . . . , xn) is a function that has its domain in Rn, we
write

f : Rn 7→ R.

So, for example, if
f(x1, x2, x3, x4) = x2x4 sin (x2

1 + x2
3),

then
f : R4 7→ R.

We say that f takes R4 to R.

6. This notion is easily generalized to functions from Rn to Rm. Let x ∈ Rn and
f1(x), . . . , fm(x) be functions taking Rn to R. Then we can define a function

f : Rn 7→ Rm,



by
f(x) = (f1(x), . . . , fm(x)).

7. Example: For t ∈ R, let f1(t) = cos t, f2(t) = sin t and f : R 7→ R2 by

f(t) = (f1(t), f2(t)) = (cos t, sin t).

As t ranges through the real numbers, f(t) traces the unit circle counterclockwise in R2.

8. Let Fi : Rn 7→ R for i = 1, . . . , n. Then

F (x) = (F1(x), , . . . , Fn(x)),

defines a vector field on Rn. In other words, F (x) : Rn 7→ Rn. So, for example, a mass
M at the origin (0, 0, 0) in R3 creates a gravitational field

F (x) = −GM

|x|3
x,

at x = (x1, x2, x3). So F is a vector field on R3.

9. Definition: Let f : Rn 7→ R. The gradient of f at x is the vector

∇f(x) = (fx1(x), . . . , fxn(x)) ,

where
fxi

=
∂f

∂xi
.

10. Definition: Let F : Rn 7→ Rn be a vector field on Rn and f : Rn 7→ R. If

−∇f(x) = F (x),

then f is a potential function (or simply, a potential) for F .

11. Let x and h be vectors in Rn. Let f : Rn 7→ R. Recall that the derivative of f at x
in the direction h is

Dhf(x) = lim
ε7→0

f(x + εh)− f(x)
ε

=
d

dε
f(x + εh)

∣∣∣
ε=0

.

According to Taylor’s theorem,

f(x + εh) = f(x) +∇f(x) · (εh) + O(ε2).



Therefore,

Dhf(x) = lim
ε7→0

f(x + εh)− f(x)
ε

= ∇f(x) · h.

12. Let F be a vector field on Rn. Thus F : Rn 7→ Rn by

F (x) = (F1(x), . . . , Fn(x)).

The divergence of the vector field F at x is

div F (x) =
n∑

i=1

∂Fi(x)
∂xi

.

The divergence measures the infinitesimal flux of the vector field. If div F (x) is positive,
then the net flow of the vecotr field is out of the point x. Note that div F : Rn 7→ R. By
the same token, if f : Rn 7→ R, then ∇f is a vector field taking Rn to Rn.

13. Let f : Rn 7→ R and F : Rn 7→ Rn. Then fF : Rn 7→ Rn and

div (fF ) = ∇f · F + fdiv F. (1)

14. Let
dx = dx1 · · · dxn,

be the n-dimensional volume differential. The integral of f : Rn 7→ R over B ⊆ Rn is
denoted ∫

B

f(x1, . . . , xn) dx1 · · · dxn =
∫

B

f(x) dx.

15. Let Q be a smooth, closed surface in Rn enclosing a region B, with surface area
differential dS. (So if n = 3, then Q really is a surface and dS the surface area differential.
If n = 2, then Q is a closed curve and dS the arclength differential on Q.) Let ν = ν(x)
be the outer unit normal to Q at x. Let F : Rn 7→ Rn be a smooth vector field. The
divergence theorem relates the integral over B to a surface integral over Q:∫

Q

F · ν dS =
∫

B

div F dx.

16. Integration by parts: Let F be a vector field on Rn and f : Rn 7→ R. Then∫
B

fdiv F dx =
∫

B

[div (fF )− F · ∇f ] dx

=
∫

B

div (fF ) dx−
∫

B

F · ∇f dx

=
∫

Q

fF · ν dS −
∫

B

F · ∇f dx.


