Advanced Calculus

1. Definition: The Cartesian product A x B of sets A and B is
Ax B={(a,b)]a€ A, be B}.
This generalizes in the obvious way to higher Cartesian products:

Ay x - x Ay ={(a1,...,an)| a1 € Ay,...,a, € A}

2. Example: The real line R, the plane R? = R x R, the n-dimensional real vector space
R™, R x [0, T], R™ x [0, T] etc.

3. Definition: The dot product (or inner or scalar product) of vectors z = (z1,...,z,)

and y = (y1,-..,yn) in R™ is
n
Ly = szyz
i=1

4. Definition: The magnitude (or 2-norm) of a vector = = (x1,...,z,) in R™ is
1
n 2
1
o= [Soat] ot
i=1

5. Definition: We write f : A+— B if f is a function whose domain is a subset of A and
whose range is a subset of B. Let

x=(T1,...,%n)
be a point in R™. So, if f(x) = f(z1,...,2,) is a function that has its domain in R®, we
write
f:R"*— R.

So, for example, if
f(@1, @0, 23, 24) = oxa sin (2] + 23),

then
f:R*—R.

We say that f takes R4 to R.

6. This notion is easily generalized to functions from R™ to R™. Let x € R™ and
fi(x),..., fm(x) be functions taking R™ to R. Then we can define a function

f:R™— R™,



by
f(@) = (fi(@),. .., fm(z)).

7. Example: For t € R, let fi(t) = cost, fo(t) =sint and f: R +— R? by
f(t) = (f1(t), f2(t)) = (cost, sint).
As t ranges through the real numbers, f(t) traces the unit circle counterclockwise in R2.

8. Let F;: R*— R fori=1,...,n. Then

F(z) = (Fi(x),,..., Fy(x)),

defines a vector field on R™. In other words, F(x) : R™ — R™. So, for example, a mass
M at the origin (0,0,0) in R? creates a gravitational field

GM

T

Zz,

at x = (21, 22,73). So F is a vector field on R3.

9. Definition: Let f: R™ — R. The gradient of f at x is the vector

V(@)= (fo, (), fu, (7)),

where
of

i

10. Definition: Let F': R™ — R™ be a vector field on R™ and f : R* — R. If
—Vf(zx) = F(x),
then f is a potential function (or simply, a potential) for F.

11. Let = and h be vectors in R™. Let f : R™ — R. Recall that the derivative of f at =
in the direction A is

Duf(a) = i PELNZID Do)

According to Taylor’s theorem,

f(z +eh) = f(x) + Vf(x)- (h) + O(?).



Therefore,

Dy f(x) = lim

e—0

12. Let F' be a vector field on R™. Thus F': R™ — R" by
F(LIZ') = (Fl('r)7 : aFn(x))

=Vf(z)-h.

flz+eh) — flx)
€

The divergence of the vector field F' at x is

. = OF(x)
leF(:L‘)—; oz,

The divergence measures the infinitesimal flux of the vector field. If div F'(z) is positive,
then the net flow of the vecotr field is out of the point x. Note that div F' : R® — R. By
the same token, if f : R™ — R, then Vf is a vector field taking R™ to R™.

13. Let f: R*— R and F : R® — R™. Then fF: R"™ — R"™ and
div(fF)=Vf-F+ fdiv F. (1)

14. Let
dr =dxq---dx,,

be the n-dimensional volume differential. The integral of f : R™ — R over B C R" is
denoted

/f(ml,...,xn)dxl---dmn:/f(ac)dx,
B B

15. Let ) be a smooth, closed surface in R™ enclosing a region B, with surface area
differential dS. (So if n = 3, then @ really is a surface and dS the surface area differential.
If n = 2, then @ is a closed curve and dS the arclength differential on Q.) Let v = v(z)
be the outer unit normal to @ at z. Let F' : R™ — R"™ be a smooth vector field. The
divergence theorem relates the integral over B to a surface integral over Q:

/F-VdS:/didem.
Q B

16. Integration by parts: Let F' be a vector field on R™ and f : R™ — R. Then
/ fdiv F dx :/ [div (fF)— F -V f] dz
B B
:/ diV(fF)d.fC—/ F-Vfdx
B B

:/QfF-udS—/BF-Vfdx.



