

Math 208, Fall 2010, Exam 1

Do problems 1-4 and any two of 5-7.

*Show your work, provide explanation where appropriate.
You don't need to simplify. You shouldn't need a calculator.*

1. Let $\vec{u} = \langle 1, 2, -1 \rangle$, $\vec{v} = \langle 3, 1, 0 \rangle$ and $\vec{w} = \langle -2, 2, 1 \rangle$.
 - [2] a. Compute $\vec{v} \times \vec{w}$.
 - [2] b. Find a vector $\vec{n} \neq \vec{0}$ that is orthogonal to \vec{v} and \vec{w} .
 - [2] c. Find the equation of the plane through $(1, -1, 2)$ with normal vector \vec{n} .
 - [2] d. Compute the area of the parallelogram formed by \vec{v} and \vec{w} .
 - [2] e. Compute the volume of the parallelepiped formed by \vec{u} , \vec{v} and \vec{w} .

2. Let $u(x, y) = \sin(x^2 - y)$.
 - [7] a. Compute the first partial derivatives of u .
 - [3] b. Compute the second-order partial derivatives of u .

3. Let $f(x, y, z) = xy + e^{yz}$, $P = (1, 2, 0)$ and $Q = (1.1, 1.9, .05)$
 - [4] a. Find the derivative of f at P in the direction $\vec{v} = \langle -2, 2, 1 \rangle$.
 - [4] b. In which direction is f increasing most rapidly at P ? What is the derivative of f at P in that direction?
 - [3] c. Use the differential to estimate $\Delta f = f(Q) - f(P)$.
 - [3] d. Find a vector normal to the level surface $f(x, y, z) = 3$ at the point P .

- [8] 4. The voltage V , current I and resistance R in a circuit are related by Ohm's law, $V = IR$. Find dV/dt when $R = 600$ ohm, $I = .04$ amp, $dR/dt = .5$ ohm/sec, and $dI/dt = -.01$ amp/sec.

- [4] 5. Let $f(x, y)$ be a smooth function with $f(a, b) = c$. Show that $\nabla f(a, b)$ is normal to the level curve $f(x, y) = c$ at the point (a, b) . (**Hint:** Let $(x(t), (y(t))$ be a parametrization of the level curve. Apply the chain rule to $f(x(t), y(t))$.)

- [4] 6. Find the local maxima, local minima and saddle points of $f(x, y) = 2xy - x^2 - 2y^2 + 3x + 4$.

- [4] 7. Find the points on the ellipsoid $x^2 + y^2 + 2z^2 = 24$ where $f(x, y, z) = x + y + 4z$ has its maximum and minimum values. (You don't have to sort the maximizers from the minimizers.)