
Surface Integrals

1. Let dσ be the surface area differential on a surface S. If f : R2 7→ R is C1 on a domain
R and

S = {(x, y, z) | z = f(x, y) for (x, y) ∈ R}, (1)

then
dσ =

√
1 + fx(x, y)2 + fy(x, y)2 dA. (2)

We can thus reduce the integral of a continuous function g : R3 7→ R over S to an
integral over R:∫

S
g(x, y, z) dσ =

∫
R

g(x, y, f(x, y))
√

1 + fx(x, y)2 + fy(x, y)2 dA, (3)

where dA is the area differential on R.

2. We orient a surface S by choosing a unit normal vector ~n. (In these notes, we always
assume that a surface can be oriented.) If S is given by (1), the unit normals are

~n = ± 〈fx(x, y), fy(x, y),−1〉√
1 + fx(x, y)2 + fy(x, y)2

. (4)

The one with the plus sign is called downward pointing , and the the other, upward
pointing. We orient S by choosing one of them to be ~n. If S is a closed surface, we
choose either the outer or inner unit normal.

3. The flux of a vector field across an oriented surface S is

Φ =
∫∫

S
~F · ~n dσ. (5)

As we saw in class, Φ measures the net flow of ~F through S. Flow “against” ~n is
counted as negative, and flow “with” ~n as positive.

4. Suppose that S is given by (1). Then by (2) and (4),

~n dσ = ±〈fx(x, y), fy(x, y),−1〉 dA. (6)

Thus,

Φ =
∫∫

S
~F · ~n dσ = ±

∫∫
R

~F (x, y, f(x, y)) 〈fx(x, y), fy(x, y),−1〉 dA, (7)

where the plus sign indicates the downward orientation, and the minus sign the upward.



5. Formula (7) should be modified in the obvious way when S is the graph of a function
f(x, z), for (x, z) in some region R. In this case,

Φ = ±
∫∫

R

~F (x, f(x, z), z) 〈fx(x, y),−1, fz(x, z))〉 dA, (8)

where dA is the area differential on the xz-plane. The plus and minus signs are for
the left and right pointing unit normals respectively. The case x = f(y, z) is handled
similarly.

6. Let ~F = 〈F1, F2, F3〉 be a C1 vector field. The divergence of ~F is

div ~F = ∇ · ~F = F1x
+ F2y

+ F3z
. (9)

Note that div ~F : R3 7→ R. Thus div ~F is a scalar valued function.

7. Let B be a box, centered at P , with volume V . Let the boundary ∂B be oriented so
that the unit normal points outward. As we showed in class,∫∫

∂B

~F · ~n dσ =
∫∫∫

B

div ~F dV. (10)

Divide by the volume V and shrink B to the point P to get

lim
B↓P

1
V

∫∫
B

~F · ~n dσ = div ~F (P ). (11)

We may thus interpret the divergence of ~F at P is the “infinitesimal flux” per unit
volume of ~F out of P .

8. If div ~F (P ) > 0, the point P is called a source. If div ~F (P ) < 0, P is a sink. If
div ~F (P ) = 0 for all P in a region D, then ~F is called incompressible on D.

9. The region B in equation (11) doesn’t have to be a box. Any blob that can be shrunk
to the point P will do. As it happens, (10) also holds for domains more general than
boxes. This is the assertion of the divergence theorem.

10. The Divergence Theorem: If Q ⊂ R3 is bounded, simply connected and enclosed by
∂Q, ~n is the outer unit normal to ∂Q, and ~F is C1, then∫∫

∂Q

~F · ~n dσ =
∫∫∫

Q

div ~F dV. (12)

The idea behind the divergence theorem is simple. Consider an infinitesimal region of
volume dV , containing the point (x, y, z). Since the divergence is the infinitesimal flux
per unit volume out of a point, the quantity

div ~F (x, y, z) dV, (13)



is the net flow of ~F out of (x, y, z). When we integrate (13), the flow out of one interior
region into another contributes nothing, leaving only the flux out of Q through ∂Q.
Hence the conclusion (12).

11. Advice on doing flux integrals: Let S be an oriented surface with unit nromal ~n. Let
~F be a vector field that is C1 in a simply connected region containing S.

a. If the integral is simple enough, you can use (5). For example, if you have an inverse
square field

~F (x, y, z) =
c~r

‖~r ‖3
,

and S is the sphere of radius R centered at the origin, then ~n = ~r /R and∫∫
S

~F · ~n dσ =
c

R

∫∫
S

~r

‖~r ‖3
· ~r dσ

=
c

R2

∫∫
S

dσ

= 4πc.

b. If S is closed and the direct use of (5) isn’t inviting, try the divergence theorem.

c. If S is not closed, it might be advantageous to replace it with a surface C that is closed,
and then apply the divergence theorem. Suppose for example that you want to compute
the flux of

~F (x, y, z) = 〈z − x, x + y, 0〉 ,

across the upper hemisphere S of radius 1, centered at the origin, oriented upward. Let
D be the disk of radius 1 about the origin in the xy-plane, oriented downward. You
can tell at a glance that ∫∫

D
~F · ~n dσ = 0. (14)

Since C = S ∪ D is closed, we can apply the divergence theorem. Let B be the region
bounded by C. Then,∫∫

S
~F · ~n dσ =

∫∫
S

~F · ~n dσ +
∫∫

D
~F · ~n dσ (by (14))

=
∫∫

C
~F · ~n dσ

=
∫∫∫

B

div ~F dV

= 0.

d. If necessary, use (7).


