Vector Fields and Line Integrals

1. Let C be a curve traced by the vector-valued function

$$\vec{r}(t) = \langle x(t), y(t), z(t) \rangle, \tag{1}$$

for $a \leq t \leq b$. The arclength differential on C is

$$ds = \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2 + \dot{z}(t)^2} dt.$$
 (2)

As we saw in class, the *line integral* of the function $g: \mathbf{R}^3 \mapsto \mathbf{R}$ over C can be expressed as integral with respect to t:

$$\int_{C} g(x, y, z) ds = \int_{a}^{b} g(x(t), y(t), z(t)) \sqrt{\dot{x}(t)^{2} + \dot{y}(t)^{2} + \dot{z}(t)^{2}} dt.$$
 (3)

2. Let $\vec{F}: \mathbf{R}^3 \mapsto \mathbf{V}_3$ by

$$\vec{F} = \langle M, N, P \rangle. \tag{4}$$

We call \vec{F} conservative if there is a function $f: \mathbf{R}^3 \mapsto \mathbf{R}$ such that

$$\vec{F} = \nabla f$$
.

The function f is a potential for \vec{F} . Note that if f is a potential for \vec{F} , then for any constant c, f + c is also a potential for \vec{F} .

3. Let

$$\vec{r} = \langle x, y, z \rangle. \tag{5}$$

The inverse-square field

$$\vec{F}(x,y,z) = \frac{k}{\|\vec{r}\|^3} \vec{r},$$
 (6)

is conservative in any region (not containing the origin) with potential

$$f(x,y,z) = -\frac{k}{\parallel \vec{r} \parallel}. (7)$$

4. The line integral of vector field: Let $\vec{F}: \mathbf{R}^3 \mapsto \mathbf{V}_3$ by

$$\vec{F} = \langle M, N, P \rangle. \tag{8}$$

We set

$$\vec{r} = \langle x, y, z \rangle, \tag{9}$$

so that

$$d\vec{r} = \langle dx, dy, dz \rangle. \tag{10}$$

We may thus write the line integral of \vec{F} over the oriented curve C as

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{C} M dx + N dy + P dz. \tag{11}$$

If $\vec{r} = \vec{r}(t)$ is given by (1), then

$$\vec{F} = \vec{F}(x(t), y(t), z(t)), \tag{12}$$

and

$$d\vec{r} = \vec{r}'(t) dt. \tag{13}$$

We can thus express the line integral of \vec{F} over C as an integral with respect to t:

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \vec{F}(x(t), y(t), z(t)) \cdot \vec{r}'(t) dt.$$
 (14)

When we defined the line integral of a function, we were only concerned with the length ds of an infinitesimal section of C. When we defined the line integral of a vector field, we had to consider both the length and direction of the infinitesimal displacement $d\vec{r}$ along C. For this reason, the curve C in (11) and (14) must be oriented. If -C is the same curve with the opposite orientation, then

$$\int_{-C} \vec{F} \cdot d\vec{r} = -\int_{C} \vec{F} \cdot d\vec{r}. \tag{15}$$

5. The curl of a vector field: The curl of $\vec{F} = \langle M, N, P \rangle$ is

$$\operatorname{curl} \vec{F} = \nabla \times \vec{F} = \begin{vmatrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ \partial_x & \partial_y & \partial_z \\ M & N & P \end{vmatrix}.$$
 (16)

In the case of a two-dimensionsal field

$$\vec{F}(x,y) = \langle M(x,y), N(x,y) \rangle,$$

(16) reduces to

$$\operatorname{curl} \vec{F} = (N_x - M_y)\vec{k}. \tag{17}$$

Remember that the curl of a vector field is another vector field.

6. Physical interpretation of the curl: Let C_{ε} be a circle of radius ε centered at (x, y, z), lying in the plane orthogonal to the unit vector \vec{n} . The *circulation* of \vec{F} around C_{ε} is the line integral of \vec{F} over C_{ε} . As we showed in class,

$$\operatorname{curl} \vec{F}(x, y, z) \cdot \vec{n} = \lim_{\varepsilon \to 0} \frac{1}{\pi \varepsilon^2} \oint_{C_{\varepsilon}} \vec{F} \cdot d\vec{r}.$$
 (18)

Thus $\operatorname{curl} \vec{F}(x,y,z)$ is the infinitesimal circulation of \vec{F} , per unit area, abut (x,y,z), normal to \vec{n} . (You don't have to use concentric circles to define the curl. Any family of piecewise smooth, closed curves normal to \vec{n} that can be shrunk to (x,y,z) will do.)

7. Stokes' Theorem: Let \mathcal{S} be an oriented surface with unit normal \vec{n} , bounded by the closed curve $\partial \mathcal{S}$, oriented by the right-hand rule. Let \vec{F} be a C^1 vector field. Then

$$\oint_{\partial S} \vec{F} \cdot d\vec{r} = \iint_{S} \operatorname{curl} \vec{F} \cdot \vec{n} \, d\sigma. \tag{19}$$

Think of S as the union of very small, almost flat, roughly rectangular patches. Let (x, y, z) lie in one such patch. Let \vec{n} be the unit normal to S at that point. Since the patch is nearly flat, we can take \vec{n} to be the unit normal to the entire patch. By the interpretation of the curl given in paragraph (6), the circulation about (x, y, z) normal to \vec{n} is

$$\operatorname{curl} \vec{F}(x, y, z) \cdot \vec{n} \, d\sigma. \tag{20}$$

We saw in class that when we "add up" (i.e. integrate) this quantity over \mathcal{S} , the circulation over an *internal* patch boundary is cancelled by circulation about the adjacent patches. This leaves only the circulation about the boundary $\partial \mathcal{S}$. Thus the conclusion (19).

8. Green's Theorem: Let $\vec{F}(x,y) = \langle M(x,y), N(x,y) \rangle$ be a two-dimensional, C^1 vector field. Let \mathcal{S} be a region in the plane bounded by the closed curve $\partial \mathcal{S}$. We orient \mathcal{S} by taking $\vec{n} = \vec{k}$, and $\partial \mathcal{S}$ by the counterclockwise direction. In two dimensions,

$$(\operatorname{curl} \vec{F}) \cdot \vec{n} = (N_x - M_y) \vec{k} \cdot \vec{k} = N_x - M_y, \tag{21}$$

$$d\sigma = dA, (22)$$

and

$$\vec{F} \cdot d\vec{r} = Mdx + Ndy. \tag{23}$$

Thus, Stokes' theorem becomes

$$\oint_{\partial S} \vec{F} \cdot d\vec{r} \equiv \oint_{\partial S} M dx + N dy = \iint_{S} (N_x - M_y) dA. \tag{24}$$

This is the conclusion of Green's theorem. Bear in mind that it is just the two-dimesional version of Stokes' theorem.

- **9**. Let the vector field \vec{F} be C^1 on some simply connected region D. The following are equivalent:
- **a.** \vec{F} is conservative on D.
- **b.** $\nabla \times \vec{F} = \vec{0}$ on D. (The vector field \vec{F} is *irrotational* on D.)
- **c.** $\oint_C \vec{F} \cdot d\vec{r} = 0$ for every closed path C in D.
- **d**. $\int_C \vec{F} \cdot d\vec{r}$ is path-independent on D.
- 10. If \vec{F} is conservative with potential f, then

$$\int_{C} \vec{F} \cdot d\vec{r} = f(B) - f(A), \tag{25}$$

where A and B are respectively the initial and terminal points of C

11. General advice on doing line integrals of vector fields: Let C be a curve lying in a simply connected region on which \vec{F} is C^1 . Suppose that you are to evaluate

$$I = \int_C \vec{F} \cdot d\vec{r} \,. \tag{26}$$

- **a**. Compute $\operatorname{curl} \vec{F}$.
- **b.** If curl $\vec{F} = \vec{0}$ and C is closed, then by (25), I = 0.
- **c**. If $\operatorname{curl} \vec{F} = \vec{0}$ and C is not closed, find a potential f and use (25).
- d. If $\operatorname{curl} \vec{F} \neq \vec{0}$, and C is closed and lies in the xy-plane, try Green's theorem. The double integral (24) might be easier to evaluate than your original line integral. If C does not lie in the xy-plane, you might be able to use Stokes' theorem to simplify your calculation, but this is doubtful. The surface integral on the right-hand side of (19) is usually more complicated than the line integral on the left.
- **e.** If all else fails, parametrize C and then use (14).