Math 208

Gradient applications additional problems

- 1. Let $f(x, y) = -0.25x^2 0.25y^2$.
 - a) Find $\nabla f(-3,4)$.
 - b) Find an equation for the level curve of f going through the point (-3,4).
 - c) Find an equation for the tangent line at (-3,4) to the equation found in (b).
 - d) Find a system of parametric equations and a non-parametric equation for the normal line to the level curve of f going through the point (-3,4).
 - e) In which direction does f decrease most rapidly at (-3,4), and what is the rate of change of f at (-3,4) in that direction?
 - f) What is the directional derivative of f at (-3,4) in the direction from there toward (0,1)?
 - g) Find all unit vectors \mathbf{u} such that $f_{\mathbf{u}}(-3,4) = 0$.
 - h) Find the unit vectors in all directions for which the rate of change of f at (-3,4) equals 2.
- 2. Let $f(x, y, z) = x^3z 2yz^2 2z$. Simplify all numbers in this problem.
 - a) Find $\nabla f(2,-1,3)$.
 - b) Find the rate of change of f at (2, -1,3) in the direction from there toward (-4,1,6).
 - c) Find an equation for the tangent plane to the level surface f(x, y, z) = 36 at the point (2, -1,3).
 - d) Find parametric equations for the normal line to the level surface f(x, y, z) = 36 at the point (2, -1,3).
 - e) Find a unit vector in the direction in which f increases most rapidly at (2, -1, 3), and the rate of change of f in that direction.

Gradient applications handout answers:

1. a)
$$< 1.5, -2 >$$

b)
$$-0.25x^2 - 0.25y^2 = -6.25$$
, or $x^2 + y^2 = 25$

c)
$$1.5(x+3) - 2(y-4) = 0$$
 or equivalent, such as $4y - 3x = 25$

d) Parametric:
$$x = -3 + 1.5t$$
 and $y = 4 - 2t$

Non-parametric:
$$\frac{x+3}{1.5} = \frac{y-4}{-2}$$
 or equivalent such as $4x + 3y = 0$

e) Direction is direction of
$$< -1.5,2>$$
, rate of change is -2.5

f)
$$\frac{3.5}{\sqrt{2}}$$

g)
$$\mathbf{u} = <0.8,0.6>$$
 or $\mathbf{u} = <-0.8,-0.6>$

h)
$$< 0,-1 >$$
 and $< 0.96,-0.28 >$ are the only such unit vectors

2. a)
$$\langle 36, -18, 18 \rangle = 18 \langle 2, -1, 1 \rangle$$
 b) $-28\frac{2}{7}$

b)
$$-28\frac{2}{7}$$

c)
$$2x - y + z = 8$$
 (or equivalent)

d)
$$x = 2 + 2t$$
, $y = -1 - t$, $z = 3 + t$ (or equivalent)

e) unit vector
$$\frac{\langle 2,-1,1\rangle}{\sqrt{6}}$$
, rate of change 18 $\sqrt{6}$