Work all of the following problems, and turn in a set of solutions as a group.

Theorem 2.1 Let G be a non-abelian torsion group and K be a field. If a group ring $K[G]$ is reversible, then G is hamiltonian.

1. Complete the details of the proof of Theorem 2.1 using the following outline:
 - Assume that $x \in G \setminus \{1\}$, and let n denote the order of x.
 - Show that for all $y \in G$ we have
 $$y(1-x)(1+x+\cdots+x^{n-1}) = 0.$$
 - Using the fact that $K[G]$ is reversible, show that
 $$(1+x+\cdots+x^{n-1})(1-xyy^{-1}) = 0.$$
 - Show that $\{1,x,\ldots,x^{n-1}\}$ is a set of n pairwise distinct elements of G, and use this fact to show that
 $$\{1,x,\ldots,x^{n-1}\} = \{1,x,\ldots,x^{n-1}\} yxy^{-1}.$$
 - Conclude that $yxy^{-1} \in \langle x \rangle$, and hence $\langle x \rangle \unlhd G$.
 - This shows that every cyclic subgroup of G is normal; extend this argument to an arbitrary subgroup H of G. Hint: Write $H = \langle x_1, x_2, \ldots \rangle$.

2. Show that the group of Quaternions is a Hamiltonian group. (Hint: You may want to recall that if G is a finite group of even order, and $H < G$ such that $[G: H] = 2$, then $H \unlhd G$.)

3. Prove the following:
 (a) That any finite group has finite exponent.
 (b) Give an example of an infinite group with finite exponent.
 (c) Does a finite group of exponent m always contain an element of order m? Explain.

4. Let G be a finite abelian group. Prove
 $$\exp(G) = \text{lcm}\{\circ(g) \mid g \in G\}$$
 (a) Is finite necessary?
 (b) Is abelian necessary?

5. Show that $K[G \times H] \cong K[G][H]$ for every field K and groups G and H.