IMMERSE 2010
Algebra Course
Problem Set 3

Work all of the following problems, and turn in a set of solutions as a group. Each group member should be responsible for \TeX-ing two problems. The final two problems are ‘Challenge problems’ that we encourage you to work through, and turn in your best effort.

1. Let G be a group and $g \in G$. Prove that
 \[\langle x \rangle := \{ x^n | n \in \mathbb{Z}^+ \} \]
 is a subgroup of G.

2. For G a group, the center of G is the set
 \[Z(G) := \{ a \in G | ga = ag \ \forall g \in G \} \]
 Prove that $Z(G)$ is a subgroup of G.

3. Let H, K be subgroups of a group G. Prove that
 \((a) \ H \cap K \leq G. \)
 \((b) \ H \cup K \leq G \) if and only if $H \leq K$ or $K \leq H$.

4. Prove that every subgroup of a cyclic group is cyclic.

5. Describe all subgroups of \mathbb{Z}_{24}. Specifically, give a generator for each subgroup, find the order of the subgroup, and describe the containments among subgroups.

6. Describe all subgroups of S_3.

7. Let G be a group, H a subgroup of G and $g \in G$ be fixed. Show
 \[gHg^{-1} := \{ ghg^{-1} | h \in H \} \]
 is a subgroup of G, with $|H| = |gHg^{-1}|$

8. Let $G = \langle x \rangle$ be a finite group order n. Show $x^a = x^b$ if and only if $a \equiv b \pmod{n}$.

10. Challenge problem! How many elements of a cyclic group of order n are generators for that group?