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Abstract. We prove, for an alternating pretzel knot K, that the canonical genus
of its Whitehead doubles W (K) is equal to the crossing number c(K) of K, verifying
a conjecture of Tripp in the case of these knots.

§0
Introduction

Every knot K in the 3-sphere S3 is the boundary of a compact orientable surface
Σ ⊆ S3, known as a Seifert surface for the knot K. The first proof of this was given
by Seifert [Se], who gave an algorithm which starts with a diagram of the knot K
and produces such a surface. The algorithm consists of orienting the knot diagram,
breaking each crossing and reconnecting the resulting four ends according to the
orientation, without re-introducing a crossing, producing disjoint ”Seifert” circles
in the projection plane, bounding (after offsetting nested circles) disjoint ”Seifert”
disks, and then reintroducing the crossings of K by stitching the disks together
with half-twisted bands.

The minimum of the genera of the “canonical” surfaces built by Seifert’s al-
gorithm, over all diagrams of the knot K, is known as the canonical genus or
diagrammatic genus of K, denoted gc(K). The minimum genus over all Seifert
surfaces, whether built by Seifert’s algorithm or not, is known as the genus of K,
and denoted g(K).

Like all such invariants, defined as the minimum over an infinite collection of
configurations, the canonical genus and the genus can be extremely difficult to
compute. But there are at least two situations where such a determination can
be reasonably carried out. The first is when gc(K) = g(K), that is, a canonical
surface has minimum genus among all Seifert surfaces. A candidate for such a
surface can, in principle (and usually in practice, as well), be verified to have
minimum genus using sutured manifold theory [Ga1]. This condition cannot always
be met, however; the genus need not equal the canonical genus, for example with the
Whitehead doubles of knots considered here and elsewhere [Na],[Tr]. The second
is when Morton’s inequality [Mo] is an equality. Morton’s inequality states that
the z-degree of the HOMFLY polynomial PK(v, z) of a knot K is at most twice
the canonical genus 2gc(K) of K. A canonical surface Σ whose genus is half of the
z-degree, if it exists, must therefore have genus equal to the canonical genus. This
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condition also cannot always be met; the first examples where Morton’s inequality
was shown to be strict were found by Stoimenow [St], and the authors [BJ] recently
found several infinite families of examples.

Both methods succeed in computing the canonical genus of alternating knots
[Cr],[Ga2],[Mu], while the second can compute the canonical genera of knots through
12 crossings [St]. The first method provides an approach to computing the canoni-
cal genera of arborescent knots [Ga3]. In fact, the authors are aware of no example
where both approaches are known to fail. (The knots considered in [St].[BJ] can
have their canonical genera computed by the first method, which is precisely why
the second method is known to fail.)

Recently, Morton’s inequality has been applied to the computation of the canon-
ical genus of the Whitehead doubles W (K) of knots K, for which the first ap-
proach can shed no light; g(W (K)) = 1 for all non-trivial K. Tripp [Tr] computed
the canonical genus of the doubles of the (2, n)-torus knots T2,n, showing that
gc(W (T2,n)) = n = c(T2,n) . For the proof he demonstrates (by induction on n)
that the z-degree of the HOMFLY polynomial of the double is 2n = 2c(T2,n). A
general construction, for any knot K, provides a canonical surface with genus c(K)
(we reproduce this construction in the next section). So we have the inequalities

2c(T2,n) = 2n =degzPW (T2,n)(v, z) ≤ 2gc(W (T2,n)) ≤ 2c(T2,n)

from which gc(W (T2,n)) = c(T2,n) follows. Nakamura [Na] has extended this argu-
ment to prove that for 2-bridge knots K, gc(W (K)) = c(K). The main part of the
argument is again an inductive proof that degzPW (K)(v, z) = 2c(K) .

P(2,3,1,3) P(1,3,3)

Figure 1: Pretzel knots

In this paper we provide another extension of Tripp’s result, to alternating pretzel
knots P (k1, . . . kn), k1, . . . , kn ≥ 1. Note that P (k1, . . . kn) is a knot iff either n is
odd and at most one ki is even, or n is even and exactly one ki is even.

Theorem 1. If K is a pretzel knot P (k1, . . . kn) with k1, . . . , kn ≥ 1, then gc(W (K)) =
k1 + · · · + kn = c(K) .

The main tool in the proof is a proposition which gives a method for building
new knots K satisfying 2c(K) =degzPW (K)(v, z) from old ones K ′.

Proposition 2. If K ′ is a knot satisfying degzPW (K′)(v, z) = 2c(K ′), and if for a
c(K ′)-minimizing diagram for K ′ we replace a crossing, thought of as a half-twist,
with three half-twists (see Figure 2), producing a knot K, then degzPW (K)(v, z) =
2c(K), and therefore gc(W (K)) = c(K) .

Theorem 1 follows immediately by repeated application of Proposition 2 to the
crossings of the (2, n) torus knots = P (1, . . . , 1) (when all ki are odd) and the
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2-bridge knots [2, n − 1] = P (2, 1, . . . , 1) (when one of the ki (wolog k1) is even),
where the initial hypothesis is satisfied by the results of Tripp and Nakamura. It
should be clear that Theorem 1 is not the strongest result that can be proved in
this way; the pretzel knots are just the simplest new class of knots encountered. A
more general statement is:

or

Figure 2: Introducing twists

Proposition 3. Let K be the class of knots having diagrams which can be obtained
from the standard diagram of the left- or right-handed trefoil knot T2,3 by repeatedly
replacing a crossing, thought of as a half-twist, by a full twist. Then for every
K ∈ K, degzPW (K)(v, z) = 2c(K), and so gc(W (K)) = c(K) .

Using Tripp’s and Nakamura’s results, we could have stated this corollary using
the a priori larger class obtained by starting with the reduced alternating diagrams
of any 2-bridge knot. But we will show that all 2-bridge knots already lie in K,
and so this “larger” class would really just be K. Stated differently, Proposition 3
implies the results of Tripp and Nakamura! We should note that the knots built
from the left-handed trefoil are the mirror images of those built from the right-
handed trefoil, and the z-degree of the HOMFLY polynomial is unchanged under
taking mirror images. So it suffices to prove the result for only one of the two
collections of knots.

§1
Notations and preliminaries

K will always denote a knot or link in the 3-sphere S3, N(K) a tubular neigh-
borhood of K, E(K) = S3\ intN(K) the exterior of K, and Σ a Seifert surface
for K, which we treat as embedded in S3. In this paper we take a diagrammatic
approach to the construction of Whitehead doubles W (K) of a knot K. Given a
diagram D of a knot K, we construct diagrams for the Whitehead doubles of K as
follows:

+

_
or

Figure 3: Whitehead doubles

Starting with the diagram D, choose an orientation for the underlying knot.
Draw a second, parallel, copy of K pushed off of K to the right, according to the
orientation of K, and oriented in the opposite direction, giving an oriented link
D(K) (which for lack of a better term, we will call the flat double of K). Note that
we will always treat D(K) as an oriented link, with the orientation just described.
W (K) is obtained from D(K) by replacing a pair of parallel arcs in the diagram
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by a “twisted clasp”, as in Figure 3. These twisted clasps consist of either a right-
handed (+) or left-handed (-) clasp together with |n| full twists to the parallel arcs
(right-handed for n > 0, left-handed for n < 0). If we need to specify a Whitehead
double, rather than deal with them as a class, we will denote it by W (K,n, +) or
W (K,n,−) . The interested reader may satisfy him/herself that this description of
Whitehead doubles is equivalent to any other description he or she has encountered.
Note that the notation W (K,n,±) is very diagram-dependent; a different diagram
will build the same collection of knots, but might label them differently (depending
upon the writhe of the diagram).

For a given non-trivial knot K, if we build its Whitehead doubles using a c(K)-
minimizing diagram as above, then after “hiding”, by isotopy, the full twists of
W (K) inside of one of the small squares formed from a crossing of K, as in Figure
4a, Seifert’s algorithm will build a canonical surface for W (K) of genus c(K). To
see this, note that the canonical surface is a checkerboard surface; this was the
point to building our Whitehead doubles with full twists in the parallel strands,
and then hiding them inside the doubling of a crossing of K. The local pictures are
as in Figure 4b.

(a)
(b)

Figure 4: A canonical surface for the Whitehead double

Continuing our calculation of the genus, note that the canonical surfaces for
all of the Whitehead doubles are homeomorphic, and so have the same genus; the
surfaces differ only in the direction of twisting at the clasp and the number of full
twists to the Seifert disk we “hid” the full twists of the doubling in. So we focus on
the surface for the Whitehead double with no full twists, W (K, 0, +) . Its canonical
Seifert surface Σ has one Seifert disk for each complementary region of the diagram
D of K, one for each crossing of K, and one for the Whitehead doubling clasp.
It has one half-twisted band for each crossing of W (K, 0, +), that is, 4c(K) + 2
twisted bands. So 1 − 2g(Σ) = χ(Σ) = |Seifert disks| - |bands| = (c(K) + |regions
of D| + 1) - (4c(K) + 2) = |regions| − 3c(K) − 1. But since D ⊆ S2 is a 4-valent
graph whose complementary regions are all disks, we have (using the usual notation)
v − e + f = 2, and 2e = 4v (since all vertices have valence 4), so e = 2v, and so f
= |regions| = 2 + v = 2 + c(K). So 1 − 2g(Σ) = 2 + c(K)− 3c(K)− 1 = 1 − 2c(K)
. So g(Σ) = c(K), as desired.

This implies that gc(W (K)) ≤ c(K) for all nontrivial knots K. Using Morton’s
inequality, we can establish the reverse inequality if we can show that degzPW (K)(v, z) =
2c(K) . Our goal is to prove this equality for a class of knots that includes the al-
ternating pretzel knots. Central to our proof is therefore a computation of the
z-degree of the HOMFLY polynomial.

The HOMFLY polynomial [FHLMOY] is a 2-variable Laurent polynomial defined
for any oriented link, and may be thought of as the unique polynomial PK(v, z),
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defined on link diagrams and invariant under the Reidemeister moves, satisfying
Punknot(v, z) = 1, and v−1PK+ − vPK− = zPK0 , where K+,K−,K0 are diagrams
which all agree except at one crossing, where they are given as in Figure 5. Here
we are following Morton’s convention in the naming of variables.

K K K0

Figure 5: HOMFLY polynomial

This skein relation gives an inductive method for computing the HOMFLY poly-
nomial, since one of K+,K− will be “closer” than the other to the unlink, in terms
of unknotting number, while K0 has fewer crossings. It also allows any one of the
polynomials to be computed from the other two.

If we write PK(v, z) as a polynomial in z, having coefficients which are polynomi-
als in v, then Morton showed [Mo] that, for any oriented diagram D of an oriented
knot or link K, the z-degree M(K) of PK(v, z) satisfies M(K) ≤ c(D) − s(D) + 1,
where c(D) is the number of crossings of the diagram and s(D) is the number of
Seifert circles of D. Since the Seifert surface Σ built by Seifert’s algorithm from this
diagram has Euler characteristic s(D)−c(D) = χ(Σ) = (2−|K|)−2g(Σ), where |K|
is the number of components of K, we have M(K) ≤ c(D)−s(D)+1 = 1−χ(Σ) =
2g(Σ)+(|K|−1) for every canonical Seifert surface for K. Consequently, for a knot
K, M(K) is bounded from above by twice the canonical genus of K, 2gc(K). Our
main interest in the HOMFLY polynomial will therefore be in a computation of
this z-degree. In particular, since the degree of the sum of two polynomials cannot
exceed the larger of their two degrees, and is equal to the larger if the degrees are
unequal, we get the basic inequalities (letting K+ denote the knot with diagram
D+, etc.) for the z-degree of PK , M(K) :

M(K+) ≤ max{M(K−),M(K0) + 1}
M(K−) ≤ max{M(K+),M(K0) + 1}
M(K0) ≤ max{M(K+),M(K−)} − 1

where equality holds if the two terms in the maximum are unequal, from the equa-
tions PK+ = v2PK− +vzPK0, PK− = v−2PK+ −v−1zPK0 , and PK0 = v−1z−1PK+ −
vz−1PK− . For example, since if we change one of the crossings in the clasp of
W (K) = L± we get the unknot = L∓, while if we break the crossing we get
the link D(K) = L0, we have M(D(K)) ≤ max{M(W (K)), 0} − 1, with equality
if M(W (K)) > 0. In particular, if we already know that M(D(K)) > 0, then
M(D(K)) = M(W (K)) − 1.

§2
Proof of the main result

In this section we prove Proposition 4 below, from which Propositions 2 and 3 and
Theorem 1 will follow. Our main goal is to compute the z-degrees of the HOMFLY
polynomials of Whitehead doubles W (K,n,±) of knots K. First, we get rid of
the clasp. As we just saw, M(D(K)) ≤ max{M(W (K)), 0} − 1 = M(W (K)) − 1.
So to prove Proposition 3 we wish to establish that if a knot K has a diagram
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D obtained from the standard diagram D0 of the trefoil knot T2,3 by repeatedly
replacing crossings, treated as half-twists, by full twists, then for a doubled link
with n full twists D(K,n), we have M(D(K,n)) = 2c(K) − 1. We note that,
by induction, this replacement process always builds alternating diagrams with no
nugatory crossings. A nugatory crossing is a crossing in the diagram D so that some
pair of opposite complementary regions represent the same connected component
of the complement of the projection of K. Such a phenomenon is preserved when
passing between a diagram with a full twist and one with a half-twist; if the crossing
is one of those in the full twist, then the half-twist will be nugatory, while if not,
then the nugatory crossing disjoint from the half- or full twist will persist. So, in
our arguments, we will always have c(K) = c(D), i.e., D is a diagram with minimal
crossing number. So what we will show is that M(D(K)) = 2c(D) − 1.

Next we get rid of the n full twists. Given a specific double D(K,n) of knot K,
changing one of the crossings among the full twists yields D(K,±(|n| − 1)) (after
isotopy), while breaking the crossing yields the unknot L, with M(L) = 0. So our
basic inequalities yield M(D(K,±(|n|− 1))) ≤ max{M(D(K,n)), 1}, with equality
so long as M(D(K,±(|n| − 1))) �= 1. By induction, then, since for a non-trivial
knot K we have c(K) ≥ 3, so long as we show that M(D(K, 0)) = 2c(D) − 1 we
will have established that M(D(K,n)) = 2c(D)−1 for all n. Since we will focus on
the case n = 0, from this point we will use D(K) to denote the flat double D(K, 0).

In general, using the same argument as in the last section, if D′ is a diagram of
a link L with doubled link D(L), since the projection of L is a graph with c(D′)
vertices and c(D′) + 2 faces, Morton’s inequality gives
M(D(L)) ≤ c(D(D′)) − s(D(D′)) + 1

= (4c(D′)) − (c(D′) + (c(D′) + 2)) + 1 = 2c(D′) − 1.
This basic estimate will be used several times in the proofs that follow.

Showing that M(D(K)) = 2c(D)−1 has the advantage of making sense when the
underlying K is a link, and not just a knot; the Whitehead doubling process does not
really apply to a link. It is therefore a better setting to use for an inductive proof;
replacing a crossing in a knot diagram with a full twist produces a 2-component
link, not a knot. We will therefore work in the setting of flat doubles D(K) of
knots or links K, following the orientation conventions established in section 1; the
parallel doubled strands for every component of K are oriented oppositely, so that
the parallel strand is to the right. What we show is:

Proposition 4. If L is a non-split link with a diagram D′ satisfying c(D′) = c(L)
and M(D(L)) = 2c(D′)−1, and K is a link having diagram D obtained by replacing
a crossing in the diagram D′ with a full twist (so that c(D) = c(D′) + 1), then
M(D(K)) = 2c(D) − 1.

From the discussion at the beginning of this section describing how information
about M(D(K)) translates to information about M(W (K)), Proposition 4 implies
Proposition 3 by induction on the number of full twists introduced, once we es-
tablish the base case. But a direct calculation (see also [Tr],[Na]) establishes that
M(D(T2,3)) = 5 = 2 · 3 − 1 = 2c(T2,3) − 1, giving the base case for the induction.
Since at every stage the process of introducing full twists builds an alternating
diagram D for K with no nugatory crossings, c(K) = c(D) at every stage of the
induction, and since the link projection is always connected, Menasco [Me] implies
that the underlying link is non-split. So Proposition 4 applies at every step of
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the induction. Proposition 2 follows by applying Proposition 4 twice. And as re-
marked in the introduction, Theorem 1 follows from Proposition 2, using the two
base cases the torus knots T2,n = K(1, . . . , 1), supplied by [Tr], and the twist knots
K(2, 1, . . . , 1), supplied by [Na]. We should note that the pretzel knots K(n1, n2)
are the torus knots T2,n1+n2 .

We now turn to the proof of Proposition 4. The proof is by induction on
c(K), and is essentially based on a large skein tree diagram calculation, with
the diagram D(D) for D(K) at the root and D(D′) as one of the leaves. We
will show that under the hypotheses of the proposition we have M(D(K)) =
M(D(L)) + 2, which establishes the inductive step. Since we are only interested in
M(D(K)) =maxdegz(PD(K)), we will only track this quantity through the calcula-
tion, rather than the entire HOMFLY polynomial, using the inequalities established
at the end of section 1.

A

B

Figure 6: Main skein tree diagram

The main skein tree diagram that we employ is given in Figure 6. The upper
left corner of the figure is a portion of our diagram D(D) for D(K) at the full twist
of K which exists by hypothesis, with an additional pair of canceling half-twists
introduced on either side of a quartet of overcrossings. A horizontal step in the
diagram involves breaking a crossing, according to the orientation of the strands;
a downward step involves changing the same crossing. Except for the addition
of a full-twist to the two parallel strands, the upper right corner of the figure is
the corresponding portion of the diagram D(D′) of D(L). The two right arrows
across the top are the basis for our induction; they imply, essentially, that PD(K) =
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z2v−2PD(L)+ other terms. The proof involves showing that the other terms do
not have high enough z-degree to interfere with the conclusion that M(D(K)) =
M(D(L)) + 2. This demonstration will occupy the remainder of the section.

This in turn involves arguing up from the bottom of the skein tree, using the
inequalities at the end of section 1 to bound the z-degrees of these other terms from
above. The initial steps in this process are done using Morton’s inequality, since
we can compute the genus of the Seifert surface built from the diagram given to
us at the leaves of the tree, or, more simply, the difference between this and the
genus of the surface built from D(D), by computing the changes in the number of
crossings (which is evident) and the number of Seifert circles (which we can do since
we know precisely where these circles come from for D(D)). In the generic case,
this will be precisely how our estimates are made. But there is also the possibility
that at some of the leaves our link will include a (possibly) twisted double of the
unknot as a split component, and our estimates will then be off by the z-degree of
its HOMFLY polynomial; they will be too low by 2 for each such component. The
estimates need to be refined slightly in this case; for ease of exposition, we deal
with this possibility at the end of the proof, and, in what follows now, act as if such
a split component has not been produced.

To start, we make note that the local picture in the upper left corner of the skein
diagram, if we were to undo the canceling pair of half-twists (since it is this simpler
diagram that we are postulating minimizes the quantity c(D(D)) − s(D(D)) + 1),
contains 8 crossings of D(D) and contains parts of 7 Seifert disks - 2 from the
crossings of K and 5 from the complementary regions of K. Note that these 5
regions of K are distinct; the one in the middle of the full twist is demonstrably
so from the figure, and the other four come from the four regions surrounding a
single crossing of K ′, which are all distinct because this crossing is not nugatory
(that is, opposite regions are distinct); otherwise, c(D′) would be greater than
c(L). As remarked earlier, replacing a crossing by a full twist cannot introduce a
nugatory crossing. It is therefore this contribution, 8 crossings and 7 disks, that we
will compare with the leaves of our skein tree to compute what genus surface each
diagram will build, giving an upper bound, by Morton’s inequality, on the z-degree
of the HOMFLY polynomial of the underlying oriented link.

(β) (γ)(α)
Figure 7: Three cases

Our argument will really be three parallel arguments, based on the underlying
orientations, and number of components, of the knot or link K involved at the full
twist where we are carrying out our skein tree argument. There are essentially
three cases, given in Figure 7; (α) and (β) are when the two strands at the full
twist belong to the same component of K, with the opposite, respectively parallel,
orientation, while (γ) is when the two strands lie in different components. We must
at several points break our argument into three parallel ones, according to which
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of these three cases we find ourselves in, when, the diagrams as given at the leaves
of the tree will typically yield canonical surfaces whose genera are too high for our
purposes. In each case we will wish to get rid of some of the crossings (thought
of as half-twists) from the local diagrams at the leaves of the tree, in order to
simplify the diagram and give us a lower genus Seifert surface. So we will push
each half-twist through the rest of the link diagram (which consists entirely of pairs
of parallel strands, having been untouched by the skein moves that we have carried
out), along these parallel strands, which will return the crossing to another one of
the four corners of the local diagram. This is precisely where the three cases arise;
each behaves differently under this operation.

In case (α), pushing a crossing from the upper left corner will return it to the
upper right (and vice versa), while from the lower left it will return to the lower
right. In case (β), pushing from the upper left will return to the lower right, and
from the upper right will return to the lower left. In case (γ), pushing from the
upper left returns to the lower left, and from the upper right returns to the lower
right. The other point to note is that if we push from two corners in such a way
that they return to the other two corners, then the net effect outside of the local
diagram will be that all strands appear to be the same, but all of their orientations
will be reversed. (If there are entire pairs of parallel components of D(K) outside
of the local diagram, we also interchange them by an isotopy, so that this is true
for all components outside of the local diagram.) The point to this is that as a
result, all of the Seifert circles outside of the local diagram, when running Seifert’s
algorithm, are the same after this pair of crossing pushes; they have simply had all
of their orientations reversed. In particular, in our count of the number of Seifert
circles at the leaves of the skein tree, we may act, after these pushes, as if the Seifert
disks outside still come precisely from the crossings of K and the complementary
regions of K, as before in Figure 4 above.

A

, ,
Figure 8: The “A” cases

In the case of the spot marked “A” in Figure 6, we have four extra crossings at
the corners which if we leave in place will give a surface with genus which is too
high for our purposes when we run Seifert’s algorithm. Figure 8 shows the result
of pushing a pair of the crossings (upper and lower left in the first two cases, upper
right and left in the third). The results are identical, except that in the first case
we have two extra pairs of full twists. We will show shortly that these full twists,
like our argument at the beginning of this section passing from D(K,n) to D(K, 0),
do not affect the z-degree, but first let us analyze the z-degree in the second and
third cases. These diagrams DA have 8 fewer vertices than the local diagram
for D(D), and 3 fewer Seifert disks. Therefore, for these diagrams, the resulting
Seifert surface Σ′ has c(DA) = c(D(D))−8 and s(DA) = s(D(D))−3. By Morton’s
inequality, this yields M(DA) ≤ c(DA)−s(DA)+1 = (c(D(D))−s(D(D))+1)−5 =
(2c(K)− 1)− 5 = 2c(K)− 6 for the last two cases. This, we shall see, is a z-degree
that is too low to interfere with our main calculation.
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Removing the pair of full twists in the first case will give a diagram identical to
the other two. The effect on the z-degree that these twists have can be determined
from the skein tree in the left of Figure 9; each of the two times we break the
crossing, the resulting short arc can be pushed out of the local diagram to return,
since we are in case (α), to the other top or bottom corner. When it does, we
see that the resulting link is another double D(L) of some link L (possibly with a
full twist). The full twist can be removed by the method of the beginning of this
section, without changing the z-degree, unless L is the unknot, in which case we
will have degree 2. Since our original knot or link K had no nugatory crossings,
however, the isotopy of the short arc has erased at least two crossings, in addition
to the two crossings in our local diagram which have now disappeared (Figure 9,
middle); the arc of K between the two corners must meet other crossings, else it
represents a monogon in the digram, and we have a nugatory crossing.

ΒαAα

(A2)

(A1)
(B1)

(A0)

(A3)

(A4) (B0)

(B2)

Figure 9: Removing full twists

So L has at least four fewer crossings than K, so M(D(L)) ≤ 2c(L) − 1 ≤
2c(K) − 9. Consequently, as we move up the skein tree on the left of Figure 9,
we have, since the link KA2 is the same link found in the second and third cases,
M(KA1) ≤ max{M(DA2),M(DA3)+1} ≤ max{2c(K)−6, 2c(K)−8} = 2c(K)−6,
so M(KA0) ≤ max{M(KA1),M(DA4)+1} ≤ max{2c(K)−6, 2c(K)−8} = 2c(K)−
6. So in all three cases we have M(DA) ≤ 2c(K) − 6.

B

,

,
Figure 10: The “B” cases

In a similar vein, we analyze the z-degree for the link with diagram at spot “B”
in our skein tree. The situation for the three cases is illustrated in Figure 10. In
this situation we need to “invent” some half-twists to push, since the diagram does
not obviously have a pair of half-twists to work with. When we do so, we obtain
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the diagrams in the figure. Again, the first case has an extra full twist that we
must deal with, but first we look at the last two cases. Their local diagrams are
identical and, compared with D(D), DB has 5 fewer crossings and 2 fewer Seifert
disks. So, by Morton’s inequality, M(DB) ≤ c(DB)−s(DB)+1 = ((c(D(D))−5)−
(s(D(D)) − 2) + 1) = (c(D(D)) − s(D(D)) + 1)− 3 = (2c(K)− 1)− 3 = 2c(K)− 4
for the last two cases.

In the first case we remove the full twist in the same manner that we did for
spot “A”; this is illustrated on the right in Figure 9. Again we find that breaking a
crossing of the full twist yields a double of a link with at least four fewer crossings
(with a full twist), and so M(KB2) ≤ 2c(K)−9. The link given by the diagram DB1

is not exactly the same as in the last two B-cases - one of the crossings is different -
but it has the same projection to the plane and so has the same number of crossings
and the same Seifert disks. So M(KB1) ≤ 2c(K) − 4. Working our way up the
skein tree then yields M(KB0) ≤ max{M(KB1),M(KB2) + 1} ≤ max{2c(K) −
4, 2c(K) − 8} = 2c(K) − 4. So in all three cases we have M(DB) ≤ 2c(K) − 4.

A

B

(1) (2)

(3)

(4)

(5)

(6)

(7)

(8)D(K)

(a)

(b)(c)

(d)

(e)(f ) (g)

(h)

Figure 11: Main skein tree diagram, labeled

To proceed with our degree calculation, we need similar estimates for all of the
other leaves of our skein tree diagram. We reproduce our main skein tree diagram
as Figure 11, with additional labels to mark the nodes of the tree. The link at
the spot marked (1) is isotopic to the double of a link diagram D′ with two fewer
crossings than K, so M(K1) ≤ 2c(D′)−1 = 2c(K)−5. At (2) we have the diagram
encountered in the (first case of) spot “B”, so M(K2) ≤ 2c(K) − 4. At (4), we
have the diagram encountered in case “A”, so M(K4) ≤ 2c(K) − 6. At (5), we
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have, after isotopy, the double of a link diagram with 2 fewer crossings than K, so
M(K2) ≤ 2c(D5) − 1 = 2c(K) − 5.

At (3), (6) and (7), we have diagrams with short arcs in one corner that we can
push out of the local diagram to return at one of the other three corners, after
which, as in the arguments for spots “A” and “B”, we have the double of a link
with at least 2 fewer crossings; the crossings that were in the local diagram are
now gone. (There are in fact still fewer crossings, but we won’t need this fact.) In
the (α) case for (3), the (β) and (γ) cases for (6), and the (α) and (γ) cases for
(7), the double has a full twist. Still, as before, we find that M(K3) ≤ 2c(K) − 5,
M(K6) ≤ 2c(K) − 5, and M(K7) ≤ 2c(K) − 5.

Finally, at (8) we have a link, a double of our link L with a full twist, to which
to apply our inductive hypothesis. By hypothesis, M(K8) = M(D(L)) = 2c(D′) =
2c(L) = 2c(K)−2. Having estimates for the z-degrees of the HOMFLY polynomials
at all of the leaves of our skein tree diagram, we proceed to work our way up to the
root of the tree, using the inequalities established at the end of section 1. Recalling
that a vertical arrow represents changing a crossing (passing between D− and D+)
and a horizontal arrow represents breaking the crossing (passing to D0), and using
the labeling scheme of Figure 11, we find:

M(Ka) ≤ max{M(K1),M(KA) + 1} ≤ max{2c(K) − 5, 2c(K) − 5} = 2c(K) − 5

M(Kb) ≤ max{M(K2),M(K3) + 1} ≤ max{2c(K) − 4, 2c(K) − 4} = 2c(K) − 4

M(Kc) ≤ max{M(Ka),M(Kb) + 1} ≤ max{2c(K) − 5, 2c(K) − 3} = 2c(K) − 3

M(Kd) ≤ max{M(K4),M(K5) + 1} ≤ max{2c(K) − 6, 2c(K) − 4} = 2c(K) − 4

M(Ke) ≤ max{M(Kd),M(K6) + 1} ≤ max{2c(K) − 4, 2c(K) − 4} = 2c(K) − 4

M(Kf) ≤ max{M(Kc),M(Ke) + 1} ≤ max{2c(K) − 3, 2c(K) − 3} = 2c(K) − 3

M(Kg) ≤ max{M(KB),M(K7) + 1} ≤ max{2c(K) − 4, 2c(K) − 4} = 2c(K) − 4

So far we have used the inequalities; now we establish equalities. M(Kh) ≤
max{M(Kg),M(K8) + 1} ≤ max{2c(K) − 4, 2c(K) − 2} = 2c(K) − 2, but since
M(K8) + 1 = 2c(K) − 2 by hypothesis, and M(Kg) ≤ 2c(K) − 4, the two quanti-
ties in the maximum are unequal, so M(Kh) = 2c(K) − 2. Finally, M(D(K)) ≤
max{M(Kf),M(Kh) + 1} ≤ max{2c(K) − 3, 2c(K) − 1} = 2c(K) − 1, but since
M(Kh) + 1 = 2c(K) − 1 and M(Kf ) ≤ 2c(K) − 3, the quantities in the maximum
are again unequal, so M(D(K)) = 2c(K) − 1, as desired.

This completes the inductive step, and so the proposition is proved by induction,
except for dealing with the possibility that the links at the leaves of the skein
tree contain twisted doubles of unknots. This is really only an issue at the leaves
where we needed to isotope a short arc through the exterior of the local diagram of
the link before using Morton’s inequality to estimate the z-degree, namely at the
nodes labeled “A”,(3),(6),“B”, and (7). In the other cases we were applying either
a local isotopy or our inductive hypothesis to make our estimates. It is a non-
local isotopy, pushing a short arc through the diagram, which can expose unlinked
components, which would render our estimates based on the number of crossings
of the link inaccurate. However, in every case, the link we have after isotopy is a
(possibly twisted) double of a link L′, obtained, essentially, by erasing one of the
two arcs in the exterior of, but incident to, the original local diagram, as well as
erasing the full twist in the local diagram, replacing the full twist with an unknotted
arc joining the two remaining ends. Since by hypothesis the link L is non-split,
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every unknotted component of L′ split off from the rest of L′, which contributes
2 to M(D(L′)) without contributing anything to C(L′) comes at the expense of
L′ having at least two fewer crossings than L; the isotopy of the short arc must
“release” these unknotted components from the main body of L. Put differently,
every spanning disk ∆ for the unknotted component must intersect L in its interior,
since otherwise the boundary of a neighborhood of ∆ would provide a splitting
sphere for L. So the disk bounding the unknotted, unlinked component, which
exists after isotoping the arc, must intersect the arc, implying that the removal of
the arc erases at least two crossings in the projection of L (the number must be
even). Consequently, the existence of an unknotted split component, rather then
requiring us to add 2 to our z-degree, implies that it is actually lower by 2 than
our local count might have led us to believe. So in addition to the two crossings
which were lost in the local diagram, which dropped our estimate of the z-degree
by 4, every unknotted split component also, on balance, implies a drop of at least
2 to this estimate. This implies, at all of the five leaves where this argument is
relevant, that if an unknotted split component is encountered, we can still conclude
that M(D(L′)) ≤ 2c(K) − 7. A quick check above will show that this is as low as
any of the estimates that were used in the arguments above, and so, if anything,
will result in lower upper bounds than we have used. So it will not affect the final
outcome.

With this last detail in place, Proposition 4 is proved.

§3
Non-alternating pretzels do not appear

to satisfy degzPW (K)(v, z) = 2c(K)

We have shown that for the pretzel knots K = P (n1, . . . , nk) whose pretzel rep-
resentation is alternating, that is, for which n1, . . . , nk ≥ 1, we have M(W (K)) =
2gc(K), so gc(K) = c(K) = n1+· · ·+nk, essentially by induction on the ni. The in-
ductive step, namely the statement of Proposition 4, can be turned around, however,
to partially establish the opposite result for pretzel knots whose pretzel representa-
tion is not alternating, that is, the ni do not all have the same sign. In this instance
we can show that M(W (K)) < 2|n1|+· · ·+2|nk|. This follows from the final compu-
tation in the proof of Proposition 4, since if at that point, we know the opposite fact
that M(K8), namely the z-degree for the upper right corner, is less than 2c(D)−3,
then (since it must be odd) it is at most 2c(D) − 5, and so, borrowing the no-
tation from the end of the proof, we have M(Kh) ≤ max{M(Kg),M(K8) + 1} ≤
max{2c(D)−4, 2c(D)−4} = 2c(D)−4, so M(D(K)) ≤ max{M(Kf),M(Kh)+1} ≤
max{2c(D)−3, 2c(D)−3} = 2c(D)−3, so M(D(K)) ≤ 2c(D)−3 < 2c(D)−1. Put
differently, if M(D(K)) = 2c(D) − 1, then we must have M(K8) = 2c(D) − 3. But
arguing our induction in reverse, if we start with a pretzel knot/link P (n1, . . . , nk)
having (WOLOG) n1 > 0, n2 < 0, we can, by turning full twists into half-twists,
return to a base case of K ′ = P (1,−1, n3, . . . , nk) to which we can apply a type
2 Reidemeister move, P (1,−1, n3, . . . , nk) = P (n3, . . . , nk). So, by the basic con-
struction, M(W (P (1,−1, n3, . . . , nk))) ≤ 2|n3|+ · · ·+2|nk| < 2|1|+2|−1|+2|n3|+
· · ·+ 2|nk| = 2c(D′), where D′ is the diagram for K ′ before the Reidemeister move.
Putting back all of the full twists to return to K, the above argument then shows
that M(D(K)) < 2c(D)− 1, so M(W (K)) < 2|n1|+ · · ·+ 2|nk|. Unfortunately, we
are not aware of a proof that c(P (n1, . . . , nk)) = |n1|+ · · ·+ |nk| in the case where
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this stands a chance of being true, namely when {−1, 1} /∈ {n1, . . . , nk} . However,
for small examples we do know that this sum is the crossing number. For example
P (3, 3,−2) is the knot 819, and P (3,−3, 2) is the knot 820, and in these cases our
argument does establish that M(W (K)) < 2c(K).

These two examples could of course be computed directly, and in fact they
were, by the authors. It was, in fact, an attempt to show that gc(W (K)) < c(K)
for these two examples that led the authors to the results presented here. Our
work here does not establish this, of course; M(W (K)) < 2c(K) implies that at
least one of M(W (K)) < 2gc(W (K)) or gc(W (K)) < c(K) (or both) hold, but to
date we do not know which of the two might be true! The point to the line of
reasoning of the previous paragraph, from our perspective, is that it “explains” the
inequality M(W (K)) < 2c(K); it shows that there is a skein tree diagram which
demonstrates that the z-degree is “too low”, without resorting to the need for a
fortuitous cancellation of terms to occur, to make the degree 2c(K) term vanish.

On a more positive (or negative) note, the argument above does establish that
M(W (K)) < 2c(K) holds for many alternating knots, namely, those that can be
formed as a connected sum K1#K2 for some K1 ∈ K, our class of knots from
Proposition 3. Since these knots are alternating, we know that c(K1#K2) =
c(K1)+c(K2). In this case if we focus on undoing the full twists in the K1 summand,
if M(W (K1#K2)) = 2c(K1#K2) = 2c(K1)+2c(K2) the argument above will allow
us to work our way back to M(W (T2,3#K2)) = 2c(T2,3) + 2c(K2) = 2c(K2) + 6 by
undoing the full twists introduced to build K1. However, there are still two more full
twists in the T2,3 summand to work with, and undoing them yields a knot K whose
diagram is the projection of K2 with a single, nugatory, crossing added. Therefore
c(K) = c(K2), but having gotten here in two steps from T2,3#K2 we should have
M(W (K)) = 2c(K2)+2, not M(W (K)) = 2c(K2). This contradiction implies that
our original hypothesis, M(W (K1#K2)) = 2c(K1#K2) is false. Since we must
have M(W (K1#K2)) ≤ 2c(K1#K2), we must conclude that M(W (K1#K2)) <
2c(K1#K2). Note that this does not tell us that gc(W (K1#K2)) �= c(K1#K2)!
But it does establish that the method of proof used by Tripp, Nakamura, and our-
selves to show that gc(W (K) = c(K), namely to show that M(W (K)) = 2c(K),
will not succeed for all alternating knots.

(a)
(b) (c)

Figure 12: Obtaining 2-bridge knots from the trefoil knot

For our final result we establish the last assertion made in the introduction,
namely that the class K built from the trefoil knots by replacing crossings by full
twists already contains the 2-bridge knots, so that including them as initial objects
would not enlarge the class. (K clearly already contains the (2, n)-torus knots.) To
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see this, we will work backwards from an alternating projection of a given 2-bridge
knot K, successively replacing full twists with half-twists, and show that we can
end up at the trefoil. Reversing this process then establishes the result.

The alternating projection for K that we will use will be the alternating 4-plat
projection of [BZ, Proposition 12.13], denoted σa1

2 σ−a2
1 · · ·σam

2 with ai > 0 for
i = 1, . . . ,m, and illustrated in Figure 12(a). Note that m is necessarily odd. The
idea is that by replacing full twists with half-twists within each block of twists σai

ε ,
we can steadily lower each of the ai, and eventually arrive at the knot represented
by σ1

2σ
−1
1 · · ·σ1

2 . Then as shown in Figure 12(b), a further two replacements can, in
effect, remove the first pair of σ1

2σ
−1
1 ’s. Repeating this process will allow us to reach

σ1
2σ

−1
1 σ1

2 , shown in Figure 12(c), which is the (left-handed) trefoil knot. Therefore,
reversing this process, every 2-bridge knot can be obtained from the trefoil knot by
a sequence of replacements of crossings by full twists, as desired. So all 2-bridge
knots lie in our class K, and so any knot obtained by replacements on a 2-bridge
knot will also lie in K.

§4
Further considerations

Proving a result like ours for a class of knots naturally begs the question “For
what other (classes of) knots does gc(W (K)) = c(K) hold?”. The discussion of the
previous section shows that the techniques we employ cannot establish this for all
alternating knots, since the equality maxdegz(PW (K)(v, z)) = 2c(K) need not hold
for non-prime alternating knots. It does not, however, show that gc(W (K)) = c(K)
does not hold. But based on the results that we have obtained here we feel that it
is reasonable to make the

Conjecture. If K is a nontrivial prime alternating knot, and W (K) is a White-
head double of K, then maxdegz(PW (K)(v, z)) = 2c(K), and therefore gc(W (K)) =
c(K) .

The argument given here implies that in trying to establish this conjecture, we
may always inductively replace a pair of crossings forming a bigon by a single cross-
ing. By Euler characteristic considerations, the projection of any knot, thought of
as a graph in the 2-sphere, has a complementary region which is either bigon or
a triangle. One may think of our results as therefore saying that a proof of the
conjecture reduces to the cases where the projection has no bigons, i.e., has com-
plementary regions that all have three or more vertices. This is because our process
of “deflation”, replacing a full twist with a half-twist, and the inverse process, keep
us within the class of prime, reduced, alternating projections. That no nugatory
crossings can be introduced has been established in Section 2 above. Menasco [Me]
has shown that a reduced alternating diagram of a non-prime alternating knot can
be detected from the diagram, that is, there must be a circle in the plane of the
projection that intersects the projection twice. But such a circle will exist after
deflation iff there is such a circle before. If such a circle (before deflation) were to
intersect the bigon region, deforming it to instead pass through one of the crossings
identifies a nugatory crossing, a contradiction, so the same circle will work after
deflation (showing ⇐), while a circle after deflation stays away from the crossings
of the projection, so since the opposite operation of inflation can be viewed as local
to the crossings (by introducing a very “small” bigon), the same circle also works
before deflation (showing ⇒).
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One may also build further infinite families of examples, along the lines of Propo-
sition 3, by replacing the trefoil knot with any other link K for which the equality
maxdegz(PD(K)(v, z)) = 2c(K) − 1 has been established, for example by direct
computation. One can, for example, verify directly that the Borromean rings L
satisfies maxdegz(PD(L)(v, z) = 11 = 2c(L)− 1, giving rise, using Proposition 4, to
a different family of (alternating) knots K satisfying gc(W (K)) = c(K) than the
family given by Proposition 3.

Looking beyond the alternating knots, one might look for non-alternating knots
K to which the techniques of this paper apply, i.e., maxdegz(PW (K)(v, z) = 2c(K).
Our results would then imply that such knots form the basis for another infinite
collection of examples. In a different direction, in the course of our proof we find
that all of the Whitehead doubles of a knot K, when our techniques apply to it,
have the same canonical genus. Is there a non-trivial knot K having Whitehead
doubles which have different canonical genera? (The trivial knot does.) Of course,
their HOMFLY polynomials will have the same z-degree, so arguments like ours
will be of no help in finding an example.
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