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Foliations and the Topology of 3-manifolds

QOutline of class 1

Ultimately we will be focussing on codimension-1 foliations of 3-manifolds, and, more
specifically, on what such a foliation can tell us about the topology of the 3-manifold
that we have foliated. But we will begin with some generalities, aimed at familiarizing
ourselves with various ways of thinking about foliations, and some of the basic concepts

used in manipulating them.

Some source materials:

Survey articles:
Lawson, Foliations, Bull. AMS (May, 1974), 50 pp.
Gabai, Foliations and 3-manifolds, Proc. ICM Kyoto (1990), 10 pp.

Lecture notes:
Conlon, Foliations of codimension-1, year-long course at Wash. U., 1989-90, 300 pp.
(Available for photocopying from the instructor)
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Tamura, Topology of foliations Cnshokor howr, ’\% otz k) 1)

Original sources:
Novikov, Topology of foliations, Moscow Math. Soc. (Trudy) (1965), 50 pp.

Gabai/Thurston, Genera of the arborescent links, A norm for the homology of 3-manifolds,
Mem. AMS 339 (Jan., 1986), 130 pp.

First definition (topologists’ definition):
A codimension-k foliation F of an n-manifold M is a way of decomposing M into a
collection of (disjoint images of 1-to-1 immersions of ) path-connected (n-k) - dimensional

manifolds, so that locally the manifolds look like the horizontal leaves of a product:

for all x€M, there is an open neighborhood U of x and a homeomorphism h:t/—(-1,1)*, so
that the (n-k)-manifolds get mapped under h to horizontal sheets

-L,D)x ... x(-1,1)x{xp-xk+1} X .. X {Xn}
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The idea is that if you don’t look too closely, you’d think you were looking at the
fibers of an (n-k) - dimensional vector bundle.
Each path-connected (n-k) - manifold of the decompostion is called a leaf of the

foliation.

Examples:

A vector bundle over a k-dimensional manifold - the fibers give a codimension-k foli-
ation of the total space. Proof: local triviality of the bundle.

More generally, a fiber bundle over a k-manifold with fiber a manifold gives a codi-

mension - k foliation (by fibers) of the total space.

Still more generally, a submersion f:M*—Nk between smooth manifolds (i.e.
f, : TxM — Ty)N is a surjection for all x€M) gives rise to a codimension - k foliation of
M by (path-components of) point inverses ~1(*). Proof: the Implicit Function Theorem
says that by the appropriate choice of local coordinates the fuction f, at any point, looks
like projection onto the last k coordinates: f(x1,...,%n) = (Xn—k+1,---,Xn). Therefore,
point-inverses look, locally, like horizontal sheets. A posteriori, each leaf is an (n-k) -
manifold.

So, for example, f:R® — R given by f(x,y,2) = x” +x2% +y%2+y?% + 3z is a submersion
(just check that V{#0 everywhere).

Exercise: Show that f:R® — R1 given by f(x,y,z) = (xZ + y2 — 1)e® is a submersion,
so foliates R3. What do the leaves look like? (Note: they will be symmetric about the

z-axis; there is a qualitative difference between negative, positive, and zero-values).

Note: every leaf of the induced foliation is a closed subset of M (i.e., the 1-to-1
immersions are embeddings) - this is because each point-inverse is a closed set, and each
path component is an open subset of the point-inverse (every point has a path-connected
neighborhood), so the complement of a component is a union of path components, hence
is open in the point-inverse.

Fact: for submersions from Euclidean spaces to Euclidean spaces, none of the leaves

are compact (proof later - uses the notion of holonomy).
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For a generic map f:M—N, one can simply delete the set of points X(f) where f, is
not surjective, leaving an open subset of M, by the Implicit Function Theorem), and so
obtain a submersion f:M\X(f)—N, which yields a foliation away from the singular set.
For example, f:R3 — R! given by f(x,y,z) = xyz foliates M=R3\(the coordinate axes) by
planes.

Completely unrelated question: what is the fundamental group of M?

There are two other topological spaces (which can really be thought of as different
topologies on the set M) which a foliation F of M gives rise to. The first is the space of

leaves.

Put an equivalence relation on M by x~y if x and y are in the same leaf of F (it should
be easy to see that this is an equivalence). There is a natural surjection p-M—M/~ (=
(notation) M/F) (send a point to its equivalence class), and we can give M/F the quotient
topology induced by this map ({CM/Fis open iff p~! (i) is open in M). This is the space

of leaves.

Example: Let F be the foliation of R? pictured below (there is actually a homeo-
morphism of R? taking it to the foliation on the right). Then the space of leaves can
be identified in pieces - the two collections of horizontal planes (in the right-hand pic-
ture) descend to closed half-rays, while the leaves in between descend to an open half-ray,
which have both endpoints of the closed rays as limit points of the open end of the ray -
see the picture. Each point of the space of leaves, it is easy to see, has a neighborhood
homeomorphic to R, so it is a (non-Hausdorff) 1-manifold (the two endpoints cannot be

separated).




Note: this example actually arises as a foliation induced by a submersion f:R? — R1;
one can assign a function which is constant on leaves, which has a nowhere-zero gradient
(just start at -oo and work up to 0 (without getting there) on the open ray, and start at 0

and go to oo on each of the clsed rays - see the Figure).
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Exercise: Build foliations of R? with the spaces of leaves given below. Can you build
a submersion inducing them? What kinds of limiting behaviors can we assign to the ends

(tending to -oo or 00)?
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Some facts about foliations of R2:

1. Every leaf of every foliation of R2? is a plane.
2. The space of leaves is always a (usually non-Hausdorff) 1-manifold. It always turns

out to have trivial fundamental group!

We will eventually prove both of these statements, when we have developed the proper

tools.




3. Every simply-connected (non-Hausdorff) 1-manifold is the space of leaves of some
foliation of R2. (Haefliger and Reeb, 1958)

4. Every foliation of R2? come from a submersion f:R? — R!. (Kaplan, 1940)

I doubt we will prove these two - they involve a fair amount of analysis. Besides, it’s

practically impossible to understand mathematics that was written in 1940.

The second space is the leaf topology on M - we’ll cover that next time.




Foliations and the Topology of 3-manifolds

Qutline of class 2

The second space commonly associated to a codim - k foliation F of a manifold M is
the leaf topology (denoted M) on M; basically, it is a way of putting a (finer) topology
on M so that it becomes homeomorphic to a disjoint union of its leaves. A basis for the
topology consists of open (in R™7¥) subsets of all of the plaques of the foliation (i.e., the
horizontal sheets in each of the distinguished coordinate charts of the definition).

Note: you should check that this is in fact a basis for a topology - a proof I think
requires Invariance of Domain (in dimension n-k).

This topology is finer than the usual manifold topology on M, since any open subset
of M can be written as a union of open subsets of distinguished coord. charts, each of
which in turn is a union of open subsets of plaques. so the identity map I:!Mr—M is a
continuous function.

We should also note that a single leaf can meet a given distinguished coordinate chart
in only a countable number of plaques, since the ‘centers’ of each plaque would form a
discrete set in the (manifold topology of the) leaf, and a path-connected manifold cannot
contain an uncountable discrete set (exercise). From this it is easy to conclude that every
foliation (except codimension-0 ones!) has an uncountable number of leaves, since any
coordinate chart has an uncountable number of plaques. Thus it is easy to see that the
idea of a path in a leaf (the continuous image of an interval) is the same in both the subspace
topology (that the image of the leaf inherits from the usual topology on M) and the leaf
topology on M; a path could not move ‘transversely’ in a chart (by the Intermediate Value
Theorem!). This same idea of counting transversely (or what really amounts to projecting
charts onto the R*’s spanned by the last k coordinates of R™) makes it easy to see that the
identity function above takes (sequentially) compact sets to (sequentially) compact sets
(since a compact set in M can meet only finitely-many plaques in any coordinate chart).

(Never mind - that’s obvious! The identity function is continuous!)

This point of view of a foliation, as a way of cutting up a manifold into lower-




dimensional objects that fit together nicely, will be our main point of view for most of the
things we will want to be doing with them. But there are other points of view that can

also be useful at times, so we will spend some time exploring them, too.

Our second point of view is that a foliation is some kind of ’geometric structure’ on
the manifold.

A manifold is just a space M with, for each point x€M, an open set set & and a
homeomorphism h:i/{ —»R"™ (which we call a coordinate chart, since it is a way of imposing
a coordinate system on U, by pulling back the one on R™). The U’s cover M, and therefore
give us an atlas of coordinate charts on M, {(Uy, hqa)}-

Extra structures are imposed on M by imposing extra conditions on the transition
functions

tap=hgohl: ho(Us N Ug)—hg(Us NUg)

of the atlas. For example, if we require that the transition functions (which map open
subsets of R™ to open subsets of R™) are all C*-smooth, then we have a C*-manifold. If
we require that they are all piécewise linear (PL), then we have a PL-manifold. If we
require that they are all real-analytic (denoted C*), then we have a C“-manifold. If we
only require homeomorphisms, we have a TOP-manifold. Many more examples can be
easily found, e.g., if transition functions are Euclidean isometries, we have a Euclidean (or
flat) manifold; if they are isometries of hyperbolic space (thinking of R™ as hyperbolic
n-space), we have a hyperbolic manifold.

Foliations can be thought of in much the same way, as a ‘reduction of the structure
group’ of the manifold, since having a foliation imposes restrictions on the kind of transition
functions we have. This is easy to see if we imagine two coordinate charts intersecting one
another. On the intersection we have two maps to R™ carrying the leaves of the foliation
to horizontal sheets. Therefore the transition function between them carries a horizontal
sheet to a leaf of the foliation to a horizontal sheet; i.e., the transition functions preserve

the horizontal sheets R™ "% x {pt.}of R™. Put slightly differently:

Second definition (differential topologists’ definition):
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A C* codimension-k foliation of an n-manifold M is an atlas of coordinate charts for

M whose transition functions

tap = (t},ﬂ,..., og
are C* and have the property that t‘;gk"'l veooatag (which a priori are functions of xj, . .. Xp )
are functions only of xp—x+41,...,Xn.

This is because what sheet you are in depends only on the last k coordinates, so if
sheets get carried to sheets, what the last k coordinates of the transition function are

depends only on the last k coordintates of the point we’re at.

Seeing that a foliation according to the old definition give a foliation according to
the new one is basically just the argument we gave above; going the other way, we have
our distinguished coordinate charts, and the (immersed images of the) submanifolds can
be just pieced together from the (inverse images of the) horizontal sheets by some sort of

‘analytic continuation’.

This point of view is very useful in some circumstances, since it makes a foliation
seem alot like other ‘geometric structures’ that have been the focus of a great deal of
research (reductions of structure groups can be related to lifts of ‘classifying maps’ from
one classifying space to another). In fact some people have used foliations as a more

amenable ‘testing ground’ for techniques in this field.

One use we can put this point of view to is to help us understand how to pass foliations
up and down a covering space projection. Suppose we are given a covering space projection
p:M—M, and, first, a codimension-k foliation F of the base M. So around each point of M
we have a distinguished coordinate chart for M, ¢, and a homeomorphism h:/—R". By
the lifting property of covering spaces (since Uis simply-connected), U is evenly-covered by
p; p~1(U)= a disjoint union of sets A, each mapped homeomorphically down to i by p. so
if we take the collection of pairs {(Us, hop|u,,..)}ranging over all preimages of (domains
of) distinguished coordinate charts, we get an atlas on M, which, we claim, is a foliation.
This is because we can easily check that the transition functions for these charts preserve

horizontal sheets: if
(Ux, hoplu, ) and (Vg, koply, )
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are two such charts (with intersecting domains), then their transition function is

(hoplu, Jo(koply,)™" = ho(plu, o (ply,) ™) ok~ = hok™!
(since going up from the base and then down again gives the identity), which preserves
horizontal levels. It is not hard to see, in fact, that the foliation of M that this creates
is the one whose leaves are (path-components of) the inverse images of the leaves of F

downstairs; think analytic continuation again.

This technique can build interesting new foliations for us (when the manifolds we
know how to foliate have non-trivial fundamental group, which unfortunately is not the
case for nearly every foliation we have built so far!). But doing this the other way around

1s even more useful.

Suppose we now have our covering space and a foliation F of M. Let us figure out
what it takes for this foliation to descend to a foliation of M. It’s easy to imagine what we
would like to do - namely, to push the distinguished coordinate charts down onto M (i.e.,
to compose them with the inverse of p, restricted to a small enough set). But it is easy to
see that, unlike the previous case, this will not always work - a set downstairs may have
many lifts upstairs, and the foliations on them upstairs may not project ‘compatibly’. In
fact, what we need is that, for any distinguished coordinate chart downstairs, and any two
lifts of it (U, h), (Up, k) upstairs, the composition

(hoply))o(koply )™ =ho(plyl)oplu)ok™
need not preserve horizontal leaves, since going down then up need not be the identity.
(The reasoning here is just slightly backwards, but I hope it conveys the correct idea).
Basically what is needed is that p|[l:) o plu, send (pieces of) leaves of F to leaves of F.

This must in general be (laboriously) checked for every pair of lifts - that going down then

back up sends leaves to leaves.

But we can do much better in some cases. Instead of going down from Uz and then
back up to U, we can go dirctly from one to the other by a map which makes the diagram
below commute. Such a map (if it extends to a homeomorphism of M to itself, which

commutes with the projection) is called a covering translation (or deck transformation)




of M. Since this map then preserves the pieces of the leaves of the foliation F, it then
must in fact send leaves of F to leaves of F, i.e., it leaves the foliation invariant (Exercise:

convince yourself that this works the other way around, too)
V 1
?'uA_\

But we need such maps for every pair of lifts, so we need the deck transformation
group (the set of all deck transformations) to act transitively on lifts. A covering space
with that property is called regular (or normal), and a necessary and sufficient condition
that a covering be normal is for p,m;(M) to be a normal subgroup of m; (M).

The easiest way to arrange that a covering space is normal is to have m; (M)={1}(the
trivial subgroup is normal), i.e., M is the universal covering of M. Then one only needs to
check that the foliation F on M is invariant under the covering translations of p, to insure
that F descends to a foliation of M. Exercise: the leaves of the resulting foliation are the

images of the leaves of F!

As an example, the 2-torus T?=8! x S! has universal cover R?, and the group of cover-
ing translations are literally tranlations of R2 by integer quantities in x- and y-directions;
G={f : f(x,y)=(x+n,y+m) for some n,meZ }If we foliate R? by parallel lines of some
fixed slope a/b, F = {{(x,y) : ax+by=c}: c€R}, then it is easy to see that this foliation is
invariant under any element of G, since if ax+by=c, then =a(x+m)+b(y+m)=c+an+bm
(i.e., lines of slope a/b are carried to lines of slope a/b by translations!). So these foliations

(there is one for each a/b€RU{o0}) all descend to foliations of T?2.

Similarly, if we foliate R® by parallel planes {{(x,y,z) : ax+by+cz=d }: deR}(for
fixed a,b,c€R), then these foliations are also ivariant under translations of R3 by integer

(and in fact any) amounts, so descend to foliations of the three-torus T3= S! x S! x S'.

Next time we will explore a bit what these foliations look like, and then move on to

describe a third way (the differential geometers’ way) of thinking about a foliation.




Foliations and the Topology of 3-manifolds

Outline of class 3

Last time we saw that foliations of RZ and R® by parallel lines and planes, respectively,
descend to foliations of 2- and 3-tori. (In fact, if you foliate R™ by parallel hyperplanes
(of codimension-k), it descends to a codimension-k foliation of the n-torus T®. We’ll begin
by studying the limiting behaviors of the leaves of these foliations.

For T2, there is a qualitative difference in the foliations coming from F = {{(x,y) :
ax+by=c}: ce€R}, depending on whether a/b is rational or not. If a/b = p/q in lowest
terms (where p,q€Z), then it is easy to see that the translation f(x,y)=(x+q,y-p) carries
a leaf of the foliation onto itself (since aq-bp=0), so each leaf of F descends to a circle
downstairs. So F is a foliation all of whose leaves are circles. We’ll see later that this will
imply that the space of leaves of F is a circle, and so this is actually a foliation by leaves
of a circle bundle.

If a/b¢ Q, then it is also easy to see that no covering translation carries a leaf onto
itself (a point and its image would demonstrate that the leaf had rational slope), so every
leaf of F maps injectively down to T2, so every leaf of F is a line.

But even more, we can see without too much difficulty that every leaf of F is dense
in T2. One way to see this is to note that if we take the projection of a given leaf {(x,y) :
ax+by=c} upstairs and the circle downstairs that is the projection of the horizontal line
{(x,y) : y=0}, then the former meets the latter in the set A = {an+c(mod 1) : n€Z}CS!.
This set is dense in the circle; the points are distinct for distinct n (otherwise a must be
rational!), so this is an infinite subset of the circle. Since the circle is compact, the set has
a limit point, so for any €>0, there are two points of the set within € of one another. This
implies (by subtracting) that there are numbers ng, mg such that lang + mo—= ry <e.
This in turn implies that the points {k(ang)+c (mod 1) : 1<k<N }S?A (for some N>1/r¢)
consists of points travelling all the way around the circle at distance less than e from its
predecessor. So every point of the circle is within € of a point of A, for every ¢, i.e., the
intersection of every leaf is dense in this circle. To show that the leaf is in fact dense in T2,

just pick any point and drag it along in its leaf to this circle; find a point in the (dense)
1




leaf as close to that point of the circle as you like, and then drag both back to the first’s

original position to find a point in the (dense) leaf as close to your point as you want.

There are similar things that can be said about the foliations of T3 that we have
built. If the coefficients of {{(x,y,2) : ax+by+cz=d }: deR}satisfy a/b,b/c,c/acQ, then
each leaf of F descends to a torus in T3, giving a foliation of T by tori (which, again,
we will see is a foliation coming from a fiber bundle). If one of them is irrational, on
the other hand, then every leaf of the foliation downstairs is dense (a similar argument to
the one given above, using a torus downstairs instead of a circle, will work). If, further,
the coefficients a,b,c are linearly independent over the integers (i.e., an+bm+cr=0 with
n,m,r€Z implies n=m=r=0), then no covering translation identifies points of any single
leaf (check!), so every leaf projects injectively to T3, giving a foliation of T all of whose
leaves are planes. As an example, take (a,b,c) = (1,1/2,7) (or your favorite triple of rational
number, irrational algebraic number, and transcendental number).

This last fact has a rather amazing converse:

Theorem(Rosenberg(C? case), Gabai(C? case): If a closed 3-manifold M admits a
foliation by planes, then M = T3,

We might take a stab at the proof of this theorem at some point, although it involves
some heavy-duty group theory!

Distributions.

Suppose we have a foliation F of M™ with smooth leaves, i.e., the 1-to-1 immersions
of the leaves of F are C! or better; another way to put it is that the first (n-k) coordinates
of the transition functions for the atlas of charts are smooth. Then we can associate to
each point x of M the (n-k)-plane in TxM tangent to the leaf passing through that point
(which we will denote Ty F; you can think of it as the image under f,, where f is the
1-to-1 immersion of the leaf, of the tangent space of the leaf). If these (n-k)-planes vary
contiuously with x, then we get an (n-k)-dimensional sub-bundle of TM (the tangent space
of M), which we will call the tangent space to the foliation, and denote by T.F.

An (n-k)-dimensional subbundle of TM is also known as a codimension-k (or (n-k)-

dimensional) distribution (usually denoted A*~¥) on M. Therefore, a necessary condition
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that a manifold M admit a codimension-k foliation is that it admit a codimension-k dis-

tribution.

This already allows us to show that some (closed) manifolds cannot admit foliations of
various codimensions. For example, a 1-dimensional distribution is a (continuous) choice of
1-dimensional subspace of TyM. This is almost a choice of a nowhere-zero vector field V on
M; certainly, a non-zero vector field determines a 1-dimensional distribution (just take the
span of V(x) in TyM). However, by lifting a 1-dimensional distribution to a double cover
M of M, if necessary, we can ‘orient’ our distribution, so that it is the span of a nowhere-
zero vector field of M or M (details below). So if a manifold M admits a 1-dimensional
distribution, then either M or a double cover M admits a nowhere-zero vector field; but it
is a well-known fact that the Euler characteristic x(M) of a manifold can be calculated by
summing up the indices of zeros of a vector field on M. If V has no zeros, therefore, x(M)=0
(empty sum). So if M admits a 1-dimensional distribution, then x(M)=0 or x(M)=0. But
M is a double cover of M, so x(M)=2x(M)=0, so x(M)=0. Since a (closed) manifold with
x(M)=0 does in fact admit a nowhere-zero vector field (a mildly difficult exercise), we

therefore have:
Prop.: A closed n-manifold admits a 1-dimensional distribution if and only if x(M)=0.

So, for example, no even-dimensional sphere S?" admits a 1-dimensional foliation,
since x(S2*)=2. Nor does any closed surface, except the torus and the Klein bottle, since

all others have non-zero Euler characteristic.

The construction of the two-fold cover required in the argument above follows a stan-
dard line, and works equally well anytime you are trying to ‘orient’ a distribution. The
idea is to ‘find’ the two-fold cover by instead finding (the image of) its fundamental group.
Le., we instead find an index 2 subgroup of 71(M), and appeal to covering space theory to
tell us that it corresponds to a 2-fold cover of M. We do this by picking a basepoint x and
an orientation for the fiber Al at that point. Then we try to drag it around loops to see
if we come back with the same or opposite orientation. The idea is that we can give the
nearby fibers an orientation consistent with the orientation on any one fiber (this should

become clear soon), so we can pass the orientation along the loop, a little bit at a time,
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until we come back to the beginning. We will let GCmy(M)=7;(M,x) denote the set of ho-
motopy classes of loops which have a representative which, when you drag the orientation
on A} around it, returns with the same orientation; the ‘orientation-preserving’ loops of
M. It is easy to see that this property in fact depends only on the homotopy class of the
curve, since any homotopy can be imagined as a sequence of really ‘small’ homotopies (for
which the image of the support is contained in a neighborhood we can coherently orient),
aand since it is easy to see that the property of being orientation-preserving is preserved
under small homotopies, it is preserved under all homotopies. It is also easy to see that
G is a subgroup of m(M), since the cancatenation of two orientation-preserving loops is
orientation-preserving (so G in closed under multiplication), and dragging an orientation
around an orientation-preserving loop in the opposite direction will preserve the orienta-
tion (so G is closed under inversion). It is also easy to see that G has at most 2 cosets in
71(M); if there are no orientation-reversing loops, then G=n1(M), while if there is one 7,

! is orientation-preserving; the

then any other 4 is equal to y-a, where a€G (i.e., a=4"y~
first loop reverses orientation, and the second one reverses it back!). Consequently, G and
~G are the only two cosets, so G has index 2.

Then we can lift the distribution A! to a distribution A! on the 2-fold (or 1-fold!)
cover M corresponding to G (just take the preimage of A} under the map p. : T;M—»T,,M
for each 3761\7[) This distribution can then be oriented by picking a base point X and
an orientation for Z;l? and then assigning an orientation for any other Zi}‘; by dragging
an orientation along any path from X to y. This assignment is independent of the path,
since any two paths to the same point together form a loop 7. If paths assign different
(i.e., opposite) orientations at ¥, then going around the loop drags the orientation at the
basepoint to its opposite. But then its projection downstairs is also an orientation-reversing
loop (dragging the orientation around, you wouldn’t be able to tell if you were upstairs or
down, because it is a local construction). But this is absurd, since p«(v)€G, which consists
of orientation-preserving loops.

This therefore gives us the required construction of an orientable 2-fold cover. Notice
that this immediately implies that any 1-dimensional distribution on a simply-connected

manifold M must be orientable; 71(M)={1} has no index-2 subgroup, so M = M!




Foliations and the Topology of 3-manifolds

Outline of class 4

Given a Riemannian metric on a manifold M (a choice of positive definite inner product
on TxM for each xéM) and a codimension-k distribution A on M, we can, by taking
the orthogonal complement of Ax (which is a k-dimensional subspce of TxM) find a k-
dimensional distribution on M. Therefore, our result from last time, that a closed manifold
M has a 1-dimensional distribution iff y(M)=0, implies also that a closed manifold M has
a codimension-1 distribution iff x(M)=0. So manifolds with non-zero Euler characteristic

(like the ones described last time) cannot admit a codimsion-1 foliation.

But what can we say if a manifold does have a codimension-k distribution? There are

several questions we might ask about foliations, that relate to distributions:

1. If M has a codimension-k distribution A, is A=TF for some codimension-k foliation F
of M?

2. (somewhat weaker) If M admits a codimension-k distribution, does it admit a codimension-
k foliation?

3. Can the same distribution be the tangent space to two different foliations?

Two of these questions, at least, can be answered by the point of view offered by our
third definition. The point is that there is a succinct criterion that must be satisfied for a
distribution to be tangent to a foliation.

Definition: A codimension-k distribution A is integrable if for any two vector fields
X,Y with X(p),Y(p)€A, for all peM, then the Lie bracket of X and Y, denoted [X,Y],
satisfies [X,Y](p)€A, for all peM.

Then the main theorem is:

Frobenius’ Theorem: A distribution is the tangent space to a foliation if and only

if it is integrable.

For an interpretation of the Lie bracket of two vector fields (another will be given later),
we need a different interpretation of what a tangent vector is. The idea is that, given a

(smooth) function f on M, we can talk about the directional derivative D, (f) of f in the

1




direction of a tangent vector, and this assignment is a derivation: D, (fg)=fD, (g)+gD.(f).

This point of view can be turned around, however: we could in fact define a tangent

vector (field) as a derivation which assigns to each smooth function another function (its
directional derivative). Then the Lie bracket of two vector fields is the derivation which
assigns to each function f the function [X,Y](f)=X(Y(f))-Y(X(f)) (a quick calculation will
convince you that this is in fact a derivation). The basic idea is that the Lie bracket
measures the extent to which mixed partial derivatives fail to commute.

The idea of the proof of Frobenius’ Theorem is that integrability is exactly the criterion
it takes to find, around each point of M, a coordinate chart (h,/) which carries Ay, under
h., to the horizontal distribution, i.e., the set of subspaces whose vectors have last k
coordinates zero.

It is easy to see that the horizontal distribution is the tangent space to a foliation on
R", namely the horizontal folation (the set of (n-k)-planes obtained by setting the last k
coordinates to constants). To help us with the last question on our list (as well as our
theorem), we should notice that the horizontal foliation is the only codimension-k foliation
of R™ tangent to the horizontal distribution. Because if there were another foliation, then
there would be a leaf containing points at different horizontal levels. So if we take a path
in that leaf between the points (which therefore has tangent vector (tangent to the leaf so)
in the distribution) and then project it onto the coordinate where the two points differ, we
would get a smooth function from an interval to R. But thenm the Mean Value Theorem
implies that some where in between the function has non-zero derivative. But this means
that at that point of the path its tangent vector has a vertical component, a contradiction.

Therefore, if we have two overlapping such coordinate charts (h2(), (k,V). then by
pulling back the horizontal foliation on one, we get a folation on Uwith tangent space Ay,
and then pushing it forward under k we get a foliation on R™ which is tangent to the
horizontal distribution, and hence (by the previous paragraph) is the horizontal foliation.

So the transition function takes horizontal sheets to horizontal sheets, so is a foliation.

We can now quickly answer the third question - the answer is ‘No’ - since if there

were two foliations with the same tangent space, then pushing each forward under a dis-
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tinguished coordinate chart, we get two foliations on R™ both tangent to the horizontal

distribution, a contradiction.

Also, this point of view allows us to quickly see that every 1-dimensional distribu-
tion is the tangent space to a foliation. This is because any two vector fields X,Y with
X(p),Y(p)€A] for all p are, locally, multiples of some non-zero vector field Z (so X=aZ,
Y=bZ for some functions a,b:/ —»R), and then a quick calculation shows

[X,Y](f)=aZ(bZ(f))-bZ(aZ(f))=a( Z(b)Z(f)+bZ(Z(f)))- b(Z(a)Z(f)+aZ(Z(f)))
(aZ(b)-bZ(a))Z(£)
so [X,Y](p)=(aZ(b)-bZ(a))Z(p)e A} for all peM, i.e. Al is integrable. This fact is actually

the existence and uniqueness of solutions to ordinary differential equations.

Integrability in higher dimensions is a non-trivial criterion, however (so the answer to
our first question is also ‘No’). Examples are not hard to come by; for example, on R we
can take the 2-dimensional distribution

A%a,b,c) = span of {(0,1,0),(1,0,b)}

We will show that this is not integrable by showing that if it were the tangent space
to a foliation, then the xy-plane must be a leaf. But this is impossible, since it’s tangent
space at (1,1,0), would then be the xy-plane, which is not the same as A?m’o) = span of
{(0,1,0),(1,0,1)}, since the latter contains vectors with non-zero z-coordinate.

The idea behind this is that if A2=TF and 7 is a path in M with 7'(t)eA2,, for all t,
then 7 is contained in a single leaf of F. This follows from work above: if we push a piece
of the path forward under a distinguished coordinate chart, we get a path in R® whose
tangent vectors are in the pushed-forward (i.e. horizontal) distribution, so the argument
above shows that the path is horizontal, i.e., is entirely contained in a horizontal leaf. So
the piece of the path back in M is entirely contained in a leaf of F. For this it is easy
to see that the set of all points t such that 4(t) is in a given leaf is open; so if ¥ is not
contained in a single leaf, then the unit interval can be written as the union of two or more

disjoint open sets. so it would not be connected, a contradiction. (Note that this argument

is completely general, and applies to the tangent space to any foliation.)
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If we use this on the distribution given above, assuming that it is tangent to a foliation,
then since (with ~(t)=(t,0,0)) 7’(t)=(1,0,0)€Aft,0,0) for all t, so the image of 4 (i.e., the
x-axis), would be entirely contained in a leaf. But then for each a€R (with y(t)=(a,t,0))
v (t)=(0,1,0)€A‘7‘,t,0) for all t, so each would also be contained in a single leaf. But since
these all intersect the x-axis, which is contained in a single leaf, each would be contained

in that same single leaf, so their union, the xy-plane, would be contained in a single leaf

of the assumed foliation. But the only way this could be true is if the xy-plane is a leaf.

Given a codimension-1 foliation of a manifold M, we’ve seen that using a Riemannian
metric we can construct an (orthoginal) 1-dimensional distribution on M, which we now
know is integrable. So every codimension-1 foliation F admits a tranverse 1-dimensional
foliation (which means that at each point of M, their tangent spaces together span the
tangent space of M). Recalling our construction from last time, we can, by possibly pass-
ing to a 2-fold cover of M, orient the transverse foliation (i.e., orient its tangent space).
We can therefore lift our codimension-1 foliation to one whose transverse foliaton is ori-
entable. Such a codimension-1 foliation is called (not surprisingly) transversely ori-
entable. Since the 1-dimensional distribution is the span of a vector field, this also means
that the codimension-1 foliation has a transverse vector field. This will be a very useful
construction for us later, since we will be able to use this to ‘push’ objects and constructions

in a leaf orthogonally off of the leaf, and lift them to nearby leaves.




Foliations and the Topology of 3-manifolds

Outline of class 5

We have seen that a (closed) manifold can have a codimension-1 foliation only if its Eu-
ler characteristic is zero. We have also seen that we can transversely orient a codimension-1
foliation, after perhaps passing to a 2-fold cover of our manifold. This immediately implies
that a codimension-1 foliation of a simply-connected manifold is transversely oriented.
These two facts together allow us to prove two of the facts about foliations F of R? stated
in the first lecture:

1. Every leaf of the foliation is a line.

The only other alternative is that some leaf is a circle, y. But then by the Jordan
Curve Theorem, v bounds a disk A? in R2. This disk inherits a codimension-1 foliation
from R2, with v =0A? as a leaf. But if we take two copies A2, A? of this foliated disk and
glue them together along their boundaries, we have a 2-sphere S? with a codimension-1
foliation, a contradiction, since x(S?)=2.

2. The space of leaves of F is a (non-Hausdorff) manifold.

We will show this by proving the claim: no leaf of F meets a distinguished chart
for the foliation twice. This implies the result, since then an open arc tranverse to a
distinguished chart maps injectively into the space of leaves, and maps to an open set
(giving a locally-Euclidean neighborhood for every point in it). It is an open set since its
inverse image in R2, which is the union of all leaves which intersect the arc, is open in
R2 (for any point in the inverse image, draw a path in its leaf to the arc, then it’s fairly
easy to see the a neighborhood of the enpoint in the arc can be dragged back to get a
neighborhood of our point entirely in the inverse image (see the figure below).

ey

To prove the claim, suppose there were a leaf hitting a chart twice. This gives a
path in a leaf joining two points in different levels together. R? is simply connected, so
our foliation is transversely oriented, so there is a vector field transverse to the foliation.
WOLOG we can assume that we orint the path in the leaf so that the starting point is
‘above’ the ending point in the chart (in the sense of the transverse vector field).We can

then use the vector field to flow the path slightly off of itself (see figure llazi), giving
zl




instead a path transverse to the foliation. Since the ends are in the same chart, we can
join them together by a positively-oriented transverse arc to complete our pushed-off path
to a (simple) loop 7 everywhere transverse to the foliation F. This loop again bounds a
disk A? which inherits a foliation from R2, except this time this foliation is everywhere
transverse to the boundary 8A%?=~. After ‘bending’ this foliation to be orthogonal along
the boundary, we can again glue two of them together to form a foliation of the 2-sphere,
a contradiction. So a leaf can’t meet a chart twice.

We have yet to answer the second question which we raised relating distributions to
foliations:

If a manifold admits a codimension-k distribution, does it admit a codimension-k
foliation?

If we think of a distribution as a section of the Grassman bundle, then we can talk
of deforming a distribution - just homotope the section through sections. This really just
means deforming the (n-k)-planes at each point in a continuous fashion. Then we can ask
an even stronger question: |

Can we deform every codimension-k distribution to the tangent space to some folia-
tion?

This stronger question was answered by Thurston in the mid-1970’s, with the surpris-
ing answer of ’'Yes’!

Theorem (Thurston): Any codimension-1 distribution on a closed manifold can be
deformed to the tangent space of a ¢* foliation of M. In particular, a closed manifold M
admits a codimension-1 foliation if and only if x(M)=0.

Theorem: (Thurston) Any distribution of codimension greater than one can be de-

formed to the tangent space of a C° foliation (whose leaves are C*°- immersed).

The last theorem can be contrasted with the fact, well-known at the time Thurston
proved these results, that there are non-trivial homotopy-theoretic obstructions (involving
the cohomology of the normal bundle to the distribution) for a C? distribution to be C2-
homotopic to the tangent space of a foliation. All of these last results are well outside of
the scope of this course - we are about to focus our attention (for the remainder of the
course) on codimension-1 foliations of 3-manifolds, where at least the weaker form of the
first theorem has a much more accessible proof. That construction will be our next topic
of study.

Constructing foliations on 3-manifolds

There is a classical (1960’s - for low-dimensional topology that is classical) construction
of (transversely orientable) codimension-1 foliations of closed, orientable 3-manifolds, that
we will work through now. We do so for two reasons - the construction introduces several
ideas that will be useful later on, and, more importantly, the constructions will hopefully
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make it clear what it is we want to avoid, if we want to make foliations topologically
meaningful (which is our ultimate goal).

The basic idea of the construction is to use the (well-known, but we will sketch a proof
here) fact that every closed, orientable 3-manifold M can be obtained by taking some link
in the 3-sphere S3, removing solid torus neigborhoods of the loops, and gluing them back
to the resulting link complement ‘differently’. What we will do is show that we can build
foliations of S® that can be carried across this construction to foliate M.

We will start by constructing the necessary foliations of S®. The main building block
for this is the Reeb component or Reeb-foliated solid torus.

If we look at the foliation of R® given by the submersion in the exercise of the first
lecture, we see that the leaves are all axially symmetric about the z-axis (since what leaf
a point is in depends only on x? + y?, not on (x,y)). What the leaves look like breaks into
3 cases: .

(x2 + y2-1)e?=0 implies x? + y2=1, so the leaf is a vertical cylinder,

(%2 +y?-1)e?=-c? <0 implies x2 +y%= 1-c%e™? <1, so this leaf lives inside the cylinder;
as z—00, X2 +y2—1, and as z—-oo the right hand side becomes negative, so the leaf closes
up by hitting the z-axis and does not continue on down,

(x2 4+ y2-1)e?=c? >0 implies x?> + y?= 14+c2e™® >1, so these leaves live outside the
cylinder; as z—o0, x? + y?—1, and as z—-00, x? + y2—o00, so these leaves flair out in the
negative direction.

In other words, the leaves inside the cylinder are hyperboloids (so are planes), and
the ones outside are annuli asyptotic to the cylinder in the positive diresction, and flair
out in the negative direction (see the figure below).

It is an easy matter to check that this foliation is invariant under vertical translations
by integer (and in fact any) amounts. Since the vertical solid cylinder D, xR? is similarly
invariant, its foliation descends to a foliation on the solid cylinder modulo these covering
translations. This ambient space is the solid torus D, xS!. The cylinder leaf descends to
the boundary torus, which is a leaf of the foliation. No R2-leaf upstairs is carried to itself
by a non-trivial translation (just look at the (one) point where each of these leaves hits
the z-axis), they all descend to R2-leaves downstairs. These leaves spiral out towards the
torus leaf (this corresponds to travelling up in the z-direction), and so the foliation looks
like the one pictured below. The core of the solid torus (the image of the z-axis) is a simple
loop in D, xS!, which intersects each leaf in the interior of the solid torus transversely. It

is called the core of the Reeb component.




It is also well-known that the 3-sphere S? can obtained by gluing two solid tori together
along their boundaries. The easiest way to see this is to think of the 3-sphere as two 3-balls
glued together. If we drill out the neighborhood of an arc in one running straight from
top to bottom, we turn the ball into a solid torus (see below); if we add this thickened
arc to the other 3-ball we turn it into a solid torus as well, and these two solid tori meet
along their boundaries. If we do this to the ‘standard’ 3-ball below (thinking of S as
R3U{o0}), we get the standard picture of these solid tori (the outside one contains the
point at infinity). We can in fact do the same thing, drilling out g parallel arcs running
vertically through one of the balls, turning it into a genus-g handlebody; adding the
thickened arc to the other ball turns it into a handlebody as well, so we can write S® as
the union of two genus-g handlebodies glued along their boundaries (this is known as a
Heegard decomposition).

.

~

If we foliate each of the two solid tori as a Reeb component, then these foliations
glue together nicely (the boundary torus is a leaf of both) to give a foliation of S®, known
as the Reeb foliation of S3(if you're first, you get everything named after you). He
supposedly built it in response to a recommendation by his advisor Ehresmann that a
good thesis problem would be to show that S* admits no codimension-1 foliations! (It’s
likely, though, that Ehresmann was thinking of real analytic foliations (most of the early
theory was focussed solely on them), which, it is true, the 3-sphere can’t support - we’ll
see why later.) This foliation is our starting point.

We’ll need some somewhat more complicated foliations on S* for our construction -
they will all be built out of this one, though, by a process known as turbulization. To
describe it we’ll need to go back to the construction of the Reeb component. If, in the
foliation of R® above, we take a vertical solid cylinder, centered on the z-axis, which is
slightly larger than the cylinder x* 4+ y?<1 that we took for the Reeb component, the
foliation on it is also invariant under vertical translation, so it descends to a foliation on
the solid torus as well. In this case however, the foliation upstairs is transverse to the
boundary of the solid cylinder, so the foliation downstairs is transverse to the boundary
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torus and meets it in (meridional) circles. Basically it looks like a Reeb-foliated solid torus
which is strictly in the interior of our solid torus, together with half-infinite annuli which

start at the boundary and spiral in towards the torus leaf (see below).
PRI N

This foliation is central to the idea of turbulization. The idea is that if we have a
foliation F of M and a simple loop 4 which is everywhere transverse to the leaves of F, then
by taking a small enough solid torus neighborhood of v, we can insure that the foliation F
meets this solid torus in a collection of meridional disks (see below). In particular, it meets
the torus boundary of this solid torus in (meridional) loops. If we erase this meridional
foliation on the solid torus and replace it with the one we’ve constructed in the previous
paragraph, the (because the foliation on the ‘outside’ of the solid torus meets the torus in
meridional circles, which match up with the leaves inside the solid torus), we get a new
foliation on M, and v is now the core of a Reeb component of this new foliation (see below).
The idea is that we have basically stuck the torus (the boundary of the Reeb component)
into M tranverse to the foliation, around the loop ¥, and have then ‘spun’ the leaves of
the foliation as it approaches this torus. This new foliation is called the turbulization of
F about ~.

Next time we’ll see how to use this idea of turbulization to foliate S in a wide variety
of ways, giving us foliations which we can ‘carry across’ the Dehn surgery construction, to
foliate all closed orientable 3-manifolds.




Foliations and the Topology of 3-manifolds

Qutline of class 6

We need two more ideas to complete our proof that all closed orientable 3-manifolds
admit codimension-1 foliations. One comes from knot theory, and will be stated without
proof.

Factl: (Alexander) Every link in S3 can be isotoped to a braid, i.e., it can be deformed
into the standard solid torus in S? so that it runs everywhere transverse to the foliation of

S!xD; by meridional disks.

A proof may be found in Joan Birman’s book, Braids, links, and mapping class groups.
Alexander’s original proof appeared in the 1920’s in the Proceedings of the NAS.

If we instead replace the foliation of the solid torus by meridional disks by the Reeb
foliation of the standard solid torus (where we either imagine that the braid lies very near
the core of the solid torus, or the R? leaves of the Reeb foliation don’t start spinning until
they are very near the boundary torus), then we can imagine instead that Alexander’s
result says that any link in S® can be isotoped to be transverse to the standard Reeb
foliation of S3. Consequently, we can turbulize the Reeb foliation along such a link. So we
get:

Proposition: For every link L in S3, there exists a foliation F of S3 such that each
component of L is the core of a Reeb component of F.

Notice that in fact LU{(z-axis)Uoo} is a complete set of cores of the Reeb components
of the turbulized foliation.

If we were to drill out a solid torus neighborhood of each component of L (getting
the exterior of L, E(L)CS?), and throw away the R2-leaves of the Reeb components, we

would in fact get a foliation of E(L), such that the boundary tori are all leaves. This fact,

together with the following one, will allow us to finish our construction.

Fact 2: For every closed, orientable 3-manifold M, there exists a link L in S® and a
link L' in M such that E(L) is homeomorphic to E(L")=M\int(N(L')).

This fact is usually stated differently, by saying that any (closed, orientable) 3-manifold
can be obtained from S? by drilling out solid torus neighborhoods of some link, and then
sewing the solid tori back in differently (this process is known as ‘doing a Dehn surgery
on the link’). It is easy to see that these two statements are equivalent.

We will outline a proof of this fact; but first let us use it to finish our construction.
Given M, we find the promised links L in S® and L' in M. By the above argument, we
can foliate E(L), so since E(L)=~E(L'), we can foliate E(L') so that the boundary tori are
leaves. But we can foliate N(L) as a disjoint collection of Reeb solid tori, so by gluing the

1




pieces together, since the boundary tori are leaves of both foliations, is it easy to see that
the two foliations together succeed in giving us a foliation of M.

The proof of Fact 2 proceeds in several steps, basically tracing its way through every
standard way of picturing a 3-manifold. It starts with a classical result of Moise (first
proved in the mid-1950’s) that every 3-manifold possesses a triangulation, i.e., it can be
written as a union of 3-simplices with pairs of faces glued together. Now if we take
(what is known as a regular) neighborhood of the 1-skeleton of the triangulation, we get a
handlebody (of some genus) Hg - it is a 3-ball (the regular neighborhood of a maximal tree
in the 1-skeleton) with a bunch of 1-handles (the (relative) regular neighborhoods of the
remaining edge) attached. Furthermore, the rest of M, M\int(Hy), is also a handlebody
(of the same genus (since the genus of a handlebody is equal to the genus of its boundary)
- it 1s a regular neighborhood of the 1-skeleton of the dual cell decomposition of M.

So every closed orientable 3-manifold can thought of as two handlebodies of some genus
(depending on M) glued together along their boundaries(by, technically, an orientation-
reversing homeomorphism). But we have already seen that for any g, S® can be abtained by
gluing two genus-g handlebodies together along their boundaries. So M can be obtained by
splitting S*open along the genus-g decomposing surface and regluing the two handlebodies

together by a different homeomorphism.

To get the two homeomorphisms in the same picture, let us say we get S® by gluing
by the homeomorphism h, and M by gluing by the homeomorphism k. Let us instead
imagine our manifolds as coming in three pieces, a handlebody on top and bottom, and
a product Fg xI in between (see figure below). If we glue the bottom handlebody to the
bottom of the product by h, then if we glue the top of the product to the top handlebody
by the identity, we get S3; but if we glue by the homeomorphism koh™?, we get M (since
it undoes the first gluing by h). We will show the Dehn surgery picture by proving a fact
about the homeomorphism f=koh™! (which is an orientation preserving homeomorphism
from Fg to itself).
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Sub-fact: Every orientation-preserving homeomorphism of Fy is isotopic to a com-
position of a finite number of Dehn twists (about non-separating curves).

A Dehn twist homeomorphism D about an (oriented) simple closed curve v is a
homeomorphism which is the identity outside of a small annular neighborhood of v, while
in the annulus $!x[0,1] it is the homeomorphism D(6,t)=(8+27t,t). + gives a positive
Dehn twist, and — gives a negative Dehn twist.

The sub-fact is proved by induction on the genus g of Fy; the base case, Fo=S?, due
to Smale, says that every orientation-preserving homeomorphism of S? is isotopic to the
identity. The induction step relies on

Claim: For any pair of non-separating simple curves 7,7’ there is a sequence Dy ,...,D,
of Dehn twists along non-separating curves such that Dyo...0D;(y') is isotopic to .

This fact allows us to carry out the inductive step, since if we pick any non-separating
curve vy and set v'=f(vy), then there are Dehn twists so that f;(y)=Dyo...0D;0 f(v) is
isotopic to v (so if we compose with an isotopy they are equal), and then if we split
domain and range Fg along v and glue in 2-disks we gét a surface of genus g-1, and f;
extends over the disks to give a homeomorphism. By induction this homeomorphism is
isotopic to a composition of Dehn twists, so (after a bit of finagling to push the annuli of
the Dehn twists off of the glued-in disks) the map f; on Fy is a composition of Dehn twists,
so by composing these with the inverses of the Dy (which the reader can easily check are
the Dehn twists along the same curves in the opposite direction), we get that f is isotopic
to a composition of Dehn twists.

To prove the claim, though, we need to establish yet another claim first:

Sub-claim: Given any two non-separating simple closed curves v, gamprsp in Fg
meeting one another transversely (in a finite number of points), then there is a sequence of
simple closed curves y=v1,...,7a=7', each meeting its predecessor transversely in a single
point.

Before proving it, let’s see how it implies the claim. The basic idea is that if [yNy'|=1,
then we can take v’ to v by a composition of two Dehn twists (and so the claim is proved
by induction). To see this, look at a picture of a small neighborhood of the union of the
two curves; it is a once-punctured torus. If orient the two curves, and then take one of
the two curves and look at the image of it under the Dehn twist about the other (see the
figures below), then it it easy to see that they are isotopic! Consequently, the composition
of a Dehn twist about one with the Dehn twist about the other in the opposite direction
take the other curve to the one curve! Composing the pairs of Dehn twists together for
each adjacent pair therefore takes 4’ to ~.




The sub-claim will be proved by induction! (Do you understand why everybody says
that all proofs in surface topology are by induction?) We’ll prove the inductive step first:
it is stated as follows.

Inductive Step: Given two non-separating simple loops «v,7' intersecting transversely

in 2 or more points, then there is a non-separating simple loop ¥" such that
Iy | [y oy [<yny'].

This, together with the fact that given two disjoint non-separating loops, there is a
third loop intersecting each of the first two exactly once (which we prove last), gives the
sub-claim.

To prove the sub-claim, orient the two loops and start walking along one (7, say)
starting at some arbitrary point and look at the first two times you run into 4'. Up to
reflecting the picture, the orientation of v’ gives rise to two cases: see the figure below.
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In the first case we can simply take 4" to be the ‘dotted’ curve shown in the figure.
Because 7' is a connected loop, starting from one point of intersection it hits the other
before it returns to the first, so 4" hits v at least one fewer time than 4’ does, while
(transverse) orientations (along 7' ) implies that 4" hits 4’ exactly once, verifying the
inequalities above. Finally, since 4" hits y'once, it must be non-separating (otherwise, the
first point of intersection represents 4' passing from one of the resulting two components
to the other, and it can’t get back!).

In the second case we must be slightly cleverer. Consider the two simple curves
Y1,Y2 given by pinching v’ together (so the orientations match up). Each of them miss v/
completely (again by transverse orientation considerations), while each hits v in at least
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two fewer points. All we need, therefore, is that at least one is non-separating. For this
we turn to first homology. [y']€H;(M) is non-zero; it’s not null-homologous since it is
non-separating. And from the figure, it is easy to see (if you know what it means) that
[71]+[72]=[7"], since they cancel (homologically) along the arc between the two points of
intersection of yNy’. So since the sum is non-zero, at least one of them is non-zero in
homology, which means it is non-separating!

This leaves the case that 4 and 7' are disjoint. But since both curves are non-
separating (so the complement of each is connected), either the complement of both is
connected, of the complement of both consists of two components (if you want to get re-
ally technical, this can be seen by using a Mayer-Vietoris sequence in homology for the
pair Fg\7,Fg\v'). In the first case, pair off the resulting boundary components, one from
each loop, and join them by an arc. If they intersect, by taking one ‘around the bend’ (see
below) we can make them m}'ss one another; then by gluing the two arcs together (after
gluing the loops from ~, gaa@-pisp back together), we get a loop hitting each exactly once.
By shortcutting this loop (below), we get a simple loop with the same properties.

In the second case, it must be that the two components must contain one each of the
loops from each splitting (the alternative is absurd: either each component has two loops,
both from the same loop, and gluing back clearly gives a non-connected surface, or one
component has one boundary component, clearly showing that the corresponding loop is
separating). So we can draw the arcs as above in each connected component and glue

together to give the required simple loop.

I ¢ v ¢

We have therefore proven the required claim and sub-claim of the sub-fact, so we have
proven the sub-fact as well. Now, what does it have to do with links in S® and M? Well,
the map koh™! can now be represented as a composition of Dehn twists, so we can change
our picture of the gluing for M to the one below. Each of the Dehn twists Dy are supported
on an annulus about curves 4k (shown as a line segment and a point, respectively, in the
figure). If we drill out a solid torus around each of the curves 4 (which amounts to drill
out a trough under each in the corresponding tops and bottoms of the small products),
then the picture looks like the one on the right; the resulting gluings look as if they were
by the identity.
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But if we actually glued the products instead by the identity (the second set of figures),
we get S3, and drilling out the solid tori again we get the picture on the right. But this
is the same picture as the one above it! Consequently, M with the solid tori around the
curves 7 drilled out is the same as S® with the solid tori around the ‘same’ curves drilled
out! This establishes the fact we have used.
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So we have completed our proof (modulo the braids result) that all closed orientable
3-manifolds admit codimension-1 foliations. It is interesting to note that we could make
the foliations we have built transversely orientable; verifying this observation is left to the
reader. We could in fact spin the foliation (in our turbulizations) around each component
of the links used in opposite directions, in various combinations, to create many different
foliations. It is also easy to create many simple loops running transverse to the foliations
we have built in M (so by turbulizing create many more foliations of M); start at a point
and trace out a curve by following the leaf of the transverse 1-dimensional foliation that
we are provided with - either we get really lucky and the curve closes up of its own accord,
giving us a transverse loop, or it doesn’t. But then it must pass arbitrarily close to itself
(since we are in a compact manifold), so we can ‘short-circuit’ it (like we did before in
proving that spaces of leaves in R? are manifolds) to create a transverse loop. (This
argument uses the fact that we know we have a transversely-orientable foliation.) these
hypothestical transverse loops could hit any of the torus leaves of the Reeb components,
a fact that will become very relevant later on.
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Today we get to the real core results of this class. We saw last time that every closed,
orientable 3-manifold admits a (transversely-orientable, in fact) codimension-1 foliation.
(It’s actually true that closed, non-orientable 3-manifolds admit codimension-1 foliations
(there are two proofs, one by Woods and the other by Thurston), but we won’t present
them here.) From the point of view, however, that we will be taking in this class, this
result that we have just proved is an out-and-out tragedy. We want to use foliations to tell
us something about what a 3-manifold looks like, and this result tells us that anything we
could prove would have to be true of all closed 3-manifolds M. And about the only thing
that fits that bill is that x(M)=0 (which a foliation does tell us, but so what).

What we need to do now is to find some ‘reasonable’ extra condition or conditions to
impose on a foliation to restrict the kinds of manifolds we can foliate in that or those ways.
The hope is that by choosing the right sort of condition we will be able to prove that all of
the 3-manifolds we get have some ‘desirable’ properties, from the 3-manifold topologist’s
point of view. What are some such properties?

1. #1(M) is infinite.  This is a desirable property because it avoids all of the known
counterexamples - Lens spaces - to a long-standing conjecture that homotopy-equivalent
3-manifolds are homeomorphic.

2. m(M)=0. This is desirable since together with (1) aj quick exercise in topology
and homotopy theory implies that the universal cover of M is contractible. Two such
manifolds therefore are homotopy equivalent iff their fundamental groups are isomorphic.

3. M is irreducible. = This means every embedded 2-sphere bounds an embedded
3-ball. This is actually (formally) stronger than (2); that fact is known as the Sphere
Theorem. (Many people use that theorem (1957?) to mark the beginning of modern
3-manifold topology.) The converse to this theorem is basically the Poincaré conjecture.

4. The universal cover of M, IUI, is homeomorphic to R3. It is actually a conjecture
that (1) and (2) together imply (4) (if you want to avoid trying to prove the Poincaré
conjecture in the process you can substitute (3) for (2)). A different way of stating it is
that the only contractible 3-manifold that covers a compact 3-manifold is R3.

These are all considered useful assumptions to make/goals to achieve when studying
a 3-manifold. The amazing fact is that there is exactly one, easy to state, criterion that we
can impose on a foliation to insure that our 3-manifold has all of these properties. To figure
out what it is, all you need to do is go back and look at our previous construction, and see
what made it so easy to foliate all of those 3-manifolds. What do all of the foliations have
in common? The answer is that they all have Reeb components - a torus leaf, bounding
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a solid torus, which is foliated with a Reeb foliation. Avoiding them is all it takes to get
all of the properties above. These results are found in the following three theorems. We
will assume (mostly for convenience) that all of the manifolds mentioned are orientable
and the foliations are transversely orientable. (Removing these properties adds a few more

manifolds to the ‘exceptions’ list.)

Theorem (Novikov): If M admits a foliation F without Reeb components, then

1. m;(M) is infinite,

2.m2(M)=0 (except for M52 xS!), and

3. for every leaf L of F, the inclusion-induced homomorphism 7 (L)—m; (M) is injec-

tive.

Theorem (Rosenberg): If M admits a foliation F without Reeb components, then M
is irreducible (unless M2S?xS?).

Let’s look at property (3) of Novikov’s theorem. If we were to lift the foliation F to a
foliation F of the universal cover M, then the commutativity of the diagram below easily
shows that any leaf Lof F m1-injects into I\~/I, i.e., it is simply-connected. But the only
simply-connected surfaces are S? and R2. We will see that if F contains an S2-leaf, then
(so does F and) M=252xS! (which is exactly where our exceptional case comes from!), so
we can assume in all other cases that every leaf of F is a plane. Then the following result

becomes very interesting.

Theorem (Palmeira): If N® is a simply-connected (open) manifold foliated by hyper-
planes R*~1, then N~RP".
Setting N=M from our discussion above, we immediately get

Corollary: If M admits a foliation without Reeb components, then either M52 xS?!
or MRS,

We will start with Novikov’s theorem. We will actually prove its contrapositive:

Novikov’s Theorem: If M is an orientable 3-manifold with a transversely orientable
foliation F, and if

1. (M) is finite,

2. m(M)#0, or

3. for some leaf L of F, the inclusion-induced homomorphism is not injective,

then F contains a Reeb component (or in case 2., M&S?xS?).

We will prove this by developing a homotopy-theoretic criterion which implies the
existence of a Reeb component, and then show that each of the homotopy-theoretic criteria
above imply this new criterion. To see what this criterion will be, let’s take a look at a
Reeb solid torus.




We can apply this reasoning, for example, to loops v in leaves (which are formally
maps f:[0,1]—L with f(0)=f(1)). Over (the image of) this loopf we can erect a positive and
negative normal fence by taking the union of the integral curves of the transverse vector

field passing through each point of the image (see figure). Then lifting the loop to nearby
leaves gives us a path in the leaf, lying in this normal fence. It will actually look like the
intersection of this leaf with the normal fence (or the pullback, if you think of the fence as
a map of an annulus into M) making one circuit around the fence. It then makes sense to
talk about a return map associated to this loop; by walking around these lifted paths, we
can define a map which assigns to the initial point of a path its ending point. This defines
an injective map from a small neighborhood of 0 (thinking of the transverse curve as [-1,1])
to some other small neighborhood of 0. This is the holonomy map; it describes how the
foliation changes, transversely, as we walk around the loop (that is what holonomy is; it
describes how some quantity or collection of objects change as you walk around a loop).

For our purposes, we need only make two distinctions in the type of behaviors we get
walking around loops. If, as we walk around a loop, in the positive or negative direction
(as determined by the transverse vector field) all lifted paths sufficiently close to 7 close
up to form loops in their leaves, we say that v is a (positive or negative) non-limit cycle.
If in the positive or negative direction no matter how close to v we look there are always
lifted paths which do not close up, we say that v is a (positive or negative) limit cycle
(see figure). (In more modern terminology we would say the « has trivial holonomy (on the
positive or negative side), and that v has non-trivial holonomy). It’s not hard to see that
the property of being a non-limit cycle is invariant under taking free homotopies in the
leaf L, and that the actual holonomy around a loop is invariant under based homotopy in
the leaf - it’s just a matter of using the ‘right’ map of a 2-disk (as below), and interpreting
the results the right way; we leave it as an exercise (since we won’t really use either fact).




It’s easy to see that the existence of a Reeb component in fact implies the third
statement of the theorem: The torus leaf T fails to mi-inject. In fact we can see a disk
in the solid torus (the meridian disk) which meets the the only its boundary, and that
boundary loop « is not null-homotopic in T, but the disk exhibits the fact that it is null-
homotopic in the solid torus (and hence in the 3-manifold M that the solid torus sits in).
This compressing disk meets the other R2-leaves in concentric loops parallel to -, and,
since these loops are in simply-connected leaves, they are in fact null-homotopic in their
leaves. This fact is the key to our homotopy-theoretic criterion. But do describe it more
exactly, we need to introduce the notion of holonomy.

Holonomy.

The basic idea behind holonomy is that if we pick a leaf L of a codimension-1 foliation
F of M, then the other leaves of F that pass near L look, in small pieces, like they are
covering spaces of L (by projecting down along the 1-dimensional foliation transverse to
F- this is a local diffeomorphism). Therefore things like lifting objects and maps in L
to nearby leaves should act alot like the lifting criterion for covering spaces. We’ll now
proceed to make this idea more rigorous.

We will deal almost exclusively with ‘lifting’ maps f:a—L of contractible sets (like arcs
and disks) to a leaf up to nearby leaves. Here the idea in covering space theory is that you
picture your favorite basepoint and lift it, and then decide how to lift another point by
drawing a path to it from the basepoint, and deciding how to lift it by dragging yourself
along the path - the local triviality of the projection ensures that you never have to make
any decisions how to proceed. The same idea works here, because the local coordinate
charts ensure that, in the small, there are no decisions to make on how to lift the map.
You simply choose basepoint for A and lift its image to a nearby leaf, and then to lift any
other point you draw a path to it and walk along the path, piecemeal lifting it to the nearby
leaf by using the fact that in the small, our foliation just looks like horizontal planes, so
its easy to tell how to extend. The fact that this lifting doesn’t depend on the path chosen
is because any two are homotopic rel endpoints, which (as in an earlier construction) we
can realize as a sequence of ‘small’ homotopies (the images of whose supports are each
contained in a distinguished neighborhood), so it is easy to see that the endpoint of the
path (i.e., which plaque we end up in) hasn’t changed.

In fact the only thing we need to worry about is that the leaf we are lifting to as we
drag along a path and the leaf we started in continue to hit the same distinguished charts
(see figure). This of course need not be the case; but by only trying to lift maps to leaves
very close to L (where close must be interpreted relative to how complicated the map f
is, 1.e., how far across L the map wanders), we can always insure that we pass from one
‘good’ chart to another’, so can always lift entire paths.
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On easy way to insure that we have a non-limit cycle is to look at a loop v null-
homotopic in the leaf L. Then there is a map f:D—L of a 2-disk into L with f|sp=+. By
our ‘lifting criterion’, this map lifts to a map of a disk in all nearby leaves; in particular,
the lifted map restricted to the boundary is a lift of v to a closed loop. Also, these lifted
loops are also null-homotopic in their leaves (since they extend to the lifted maps of the
disk).

A vanishing cycle is basically like a null-homotopic loop, in that it lifts to null-
homotopic loops, it’s just not itself null-homotopic.

Definition: A vanishing cycle for the foliation F of M is a (singular) loop v in a
leaf L such that v is a (positive or negative) non-limit cycle, the lifts of 4 in the appropriate
direction are all loops null-homotopic in their respective leaves, but v is not null-homotopic
in its leaf L.

Note that this is exactly true of the meridional loop in the torus boundary of a
Reeb component. Note also that the definition only talks about null-homotopic versus
homotopically essential loops - its just a homotopy-theoretic criterion on our leaves.

The proof of Novikov’s theorem naturally breaks into three pieces:

1. Show that each of the three conditions in the theorem implies the existence if a
singular (although by general nonsen;e we can assume it is immersed) vanishing cycle in
some leaf of F (this basically turns one homotopy-theoretic fact into another),

2. Show that if some leaf has an immersed vanishing cycle, then some leaf has an
embedded vanishing cycle (this is the heart - it turns a homotopy-theoretic fact into a
geometric one), and

3. Show that a leaf with an embedded vanishing cycle is a torus, bounding a solid
torus with a Reeb foliation (which turns one geometric fact into another).

We'll handle these in the order 3., then 1., then 2. (so that we get a chance to
warm up a bit). Actually, 1. is not quite exact - we’ll show that under the second
condition (w2(M)#£0), either F has a vanishing cycle or some leaf of F has non-trivial
second homotopy group. Now the only surfaces with this property are S2 and RP? (and
under our orientability hypotheses, an RP? leaf cannot occur). Since our exceptional case
stems from this one possibility, that some leaf of the foliation is a 2-sphere, we will deal
with this exception first (and, as it happens, develop some useful techniques for dealing
with part 3. of the theorem). The result we will prove is called the Reeb Stability Theorem.
We’ll begin with it next time.
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Today we will prove the following theorem:

Theorem (Reeb Stability): If a closed orientable 3-manifold M admits a transversely-
orientable foliation F , and one of the leaves L of F is a 2-sphere, then M52 xS, every leaf
of F is a 2-sphere, and the foliation consists (up to homeomorphism) of leaves S?x {pt.}.

We can relax the orientability and transverse-orientability assumptions without too
much difficulty (by passing, if necessary, to a 2- or 4-fold covering); we then get that
any closed 3-manifold admitting a foliation with an S? or RP? leaf is covered, in a leaf-
preserving way, by S?xS!; it is an easy matter then to determine what possible manifolds
there are (using a little bundle technology). They are the two bundles over S! with fiber
S?, the two bundles over S! with fiber RP2, and the connected sum of two RP3’s
(RP3\(3-ball) can be foliated with one RP? leaf, the rest being 2-spheres).

We will see that not only will this result be useful to us (it describes exactly where the
exceptional cases of our main theorems come from), but the techniques we develop during
its proof will carry over almost unchanged to the last third of the proof of Novikov’s

theorem.

We will prove Reeb Stability by showing that the union ¢ of the set of 2-sphere leaves
of F is both open and closed in M (hence is all of M, since M is (assumed) connected,
so every leaf is a 2-sphere), and the space of leaves is a (compact Hausdorff) 1-manifold,
hence a circle. From there it is easy to see that M is one of the two bundles over S! with
fiber S?, so, since it is orientable, M22S2? xS!,

The first part, that ¢ is open, is not hard, and in fact follows immediately from
holonomy considerations. Pick a 2-sphere leaf S, and write it as S=D*tUD™, the union
of its northern and southern hemispheres. These are embedded disks in S, so they lift
along the transverse vector field, in both directions, to embedded disks in nearby leaves,
D}, D;. Consequently, their common boundary, DY ND~ =~ lifts to loops in nearby leaves
~e, which is the common boundary of the lifted disks. Therefore, every nearby leaf is the
union of two disks glued together along their boundaries, i.e., is a 2-sphere. So every leaf
sufficiently close to a 2-sphere leaf is a 2-sphere; the set U of 2-sphere leaves is open.

Now suppose that U is not closed; so there is a point x¢U which is a limit point of U .
In particular, the leaf L of F containing x is not a 2-sphere. Therefore there is a sequence
of points x, in U/ limiting down on x. In particular, in some distinguished chart about
x, the plaques containing the x, must be limiting down on the plaque containing x (they
can’t be in the same plaque as x, since then the plaque containing x would be in a 2-sphere
leaf!). We can therefore without any loss of generality replace the x, with the points in




their plaques lying directly above x (in the direction of the transverse vector field); this
sequence (is also in &/ and) also limits on x.

We can therefore imagine ourselves to be in the situation pictured below. As we stare
down the transverse foliation, we can be standing on Xn, apointina 2-sphere leaf, but a
short distance away, the point x is not in a 2-sphere leaf. Since U is open, it intersects the
short arc between x; and x in an open set, so there is a first point z along this arc going
from x, to x which is not in a 2-sphere leaf (possibly z=x). We will demonstrate that z is
in fact in a 2-sphere leaf, giving us a contradiction to the assumption that i is not closed.

Y
—-—ki—’ Tiled

;::. .
___ﬁ- Y S\“"i":g .
y

We will do this by constructing a map f:S2x[0,e] =M which maps 2-sphere levels
injectively into leaves of F, for which z€f(S?x{0}). Since this image is the continuous
image of a compact set into a Hausdorff set (the leaf L) under an injective map, it is
a subset of L homeomorphic to S%; since L is connected, we therefore have that L is a
2-sphere.

The idea is to just start at the 2-sphere leaf S? containing x, and flow along the
transverse foliation in the direction of z, parametrizing the resulting map by what leaf we
land in (using a parametrization of the short arc from x, to z (letting z correspond to 0).
The point is that unless as we flow along the trajectories from a point of S? the path we
trace out gets infinitely long before we reach zero, we will be able to define our function
for all t>0, as well as define a limiting value for t=0. (This is because we can always push
a little bit further from any point we can reach - we are just flowing along the transverse
vector field. There is nothing that we can run into to stop us.) It will then be a relatively
easy matter to show that all of the properties claimed for the resulting function are true.

Bu there is the possibility that one of the paths traced out in this way reaches infinite
length before it reached zero (because we are imposing an unnatural parametrization on
the path - it is parametrized by the leaves it passes through). What we will show is that
if this were to happen, then we would have already passed through every leaf of 7 . So
they are all 2-spheres - they are all among the 2-sphere leaves lying between x, and z!




We’ve already used a variant of the argument required for this as well. The idea is
that if our trajectory has become infinitely long, then since we are in a compact manifold
M, this path a must have passed arbitrarily closed to itself; in particular, it must have
passed through the same distinguished chart twice (see figure above). Therefore it must
have passed through the same 2-sphere leaf S?=S? twice. But if we then take the set V of
2-sphere leaves lying between the points corresponding to r and s in our parametrizing arc,
we can easily see that this set is both open and closed in M (hence is all of M). It is closed
because for any sequence in V converging in M, a,—a, using the same idea as above, we
can assume that the ajare converging straight down along the transverse foliation. But
then the trajectory they are following reaches a without becoming infinitely long, so the
parameters corresponding to the a,(which lie in [r,s]) must converge to that of a, so it also
lies in [r,s], i.e., a€V. On the other hand, the set is open, since if we pict any point in S? for
t€(r,s), we can draw a path in its leaf back to the point t in the parametrizing arc. There
an open set around the point is obvious, and it can be dragged back along the path to
give an open neighborhood of our point (see figure below). If on the other hand the point
lies in S?=S2, then we can draw two paths, one each back to r and s. Then we can take
two half-neighborhoods (one above and one below) and drag them back along the paths
to give to half-neighborhoods (one above, one below) around our point; inside their union

it is easy to see that we can find an open neighborhood of the point (see figure below).

So we can assume that all of our trajectories from S? are defined for all t>0, and have
finite length. But then it is easy to see that the map f:S%x[0,¢] given by f(x,t)= the point
along the trajectory from x in the leaf S? is a continuous function (this follows readily
from a distinguished coordinate picture, including the limiting case t=0, since we can
imagine the transverse foliation consisting of vertical lines (or at least as continuous paths
transverse to the horizontal plaques); the parametrization of the horizontal plaques by
which 2-sphere they are in is a strictly monotone decreasing continuous function). Notice
that we can assume that each of our 2-sphere leaves corresponds to a unique parameter -
otherwise, a trajectory passes through a leaf twice, and the argument above applies instead,
to get what we want!

Therefore the restriction of this function to the sphere S2 x0 maps it continuously into
the leaf L containing z. This map is injective (by the uniqueness of solutions of ordinary
differential equations, basically); no two distinct trajectories pass through the same point.
The only possibility then is that we limited on this point from both sides (see figure below);

3




but this violates our transverse orientability assumption (this is actually the only place
where we use it!) - the non-zero vector at that point would have to be pointing both ways.

We therefore have verified all of the properties used in our argument above, so the
leaf L containing z is a 2-sphere, a contradiction. So every leaf is a 2-sphere.

Finally, showing that the space of leaves is a Hausdorff manifold is easy; it is locally
Euclidean since each 2-sphere leaf pushes off of itself to nearby 2-spheres, so a neighborhood
of every leaf looks like S? crossed with an open interval. The transverse interval projects
injectively to an open neighborhood of the point corresponding to our leaf; it is an open set
since its inverse image is our neighborhood of the leaf, so is a saturated open set. Finally
the space of leaves is Hausdorff since all of our leaves are compact; any two distinct leaves
have disjoint e-neighborhoods, and each contains a saturated neighborhood like we just
described (details left as an exercise - each leaf is covered by finitely-many distinguished
charts). Finally, the space of leaves is compact, since it is the continuous image of M under
the quotient map.
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That finishes the proof of Reeb stability. It is actually true more generally that for
any codimension-1 foliation F of a compact manifold the union of the compact leaves
of F forms a closed set, and that in fact for any compact leaf any other compact leaf
sufficiently close to it is diffeomorphic to it (so as a consequence any foliation has only
finitely many compact leaves, up to diffeomorphism, and the union of the set of compact
leaves diffeomorphic to a given one is also closed (which is what we proved for S? above).
The proof is a variant of what we gave above, but is a bit more involved. Also, the openness
part of our prove can be generalized (this generalization is actually what is usually called
Reeb stability) - if a compact leaf contains no loops with non-trivial holonomy, then every
leaf sufficiently close to it is diffeomorphic to it. This can be strengthened somewhat to
include the case that the set of leaves with non-trivial holonomy forms a finite subgroup
of the fundamental group of the leaf. We will probably not pursue these generalizations.

Our next task will be to utilize this idea of flowing along the transverse foliation to
prove the last third of our outline of Novikov’s theorem. In that case however, we will find
that some trajectory has to become infinitely long before reaching 0; it will be an essential
ingredient to the proof! compact
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Today we will prove the third step in our program to prove Novikov’s theorem. We
will show that if a leaf L of a foliation F of M contains an embedded vanishing cycle v,
then L is a torus bounding a solid torus with a Reeb foliation. The techniques involved
are similar in spirit to our proof of Reeb stability, but, as it turns out, the conclusions are
exactly the opposite.

If we look at the normal fence over y=v, nearby leaves, by definition, meet it in loops
7+ which are null-homotopic in their leaves. If we choose a short enough fence, we can
assume that its image is an embedded annulus A (since v is embedded). Now each 4, for
t>0 is an embedded null-homotopic loop in the leaf L;; consequently, each bounds a disk
D, in the leaf.

One way to see this: lift the loop up to the universal cover of the leaf; it is R2, so the
Jordan curve theorem implies that it bounds a disk. This is true for every lift, and further,
the disks bounded by each lift are disjoint. For otherwise, since their boundaries are disjoint
(so one is contained in the other), and since there is a covering translation taking any lift
to any other, this translation would carry the one disk into itself. Therefore the covering
translation has a fixed point by the Brouwer Fixed Point Theorem, a contradiction (the
only one which fixes a point is the identity!). From here it is easy to see that the covering
projection maps any one of these disks injectively down to Ly, giving a disk bounded by
7i(otherwise, there is a point downstairs covered by two upstairs - there is a covering
translation carrying one to the other, which, like before, must have a fixed point) .

Now pick one of the disks D,, and look at D.NACD,. This is a collection of loops
(actually they are all 4¢’s), in a disk, so we can pick an innermost one 7;9. Then the union
of the disk (in D, actually) and the annulus in A between 7 and o Aembedded in M
(since each piece is embedded and meet only in o). Nov’vﬁ:"(:(,\ﬂ.\L

Now start flowing from D, down toward the leaf Ly containing the vanishing cycle
Y0, as we did in proving Reeb stability. We can then build, as we did then, a map
£:D¢x(0,e] =M, and try to extend it to 0. The map obtained by flowing along trajectories
is defined for all positive t, since the set of t for which the function can be defined for all
points of D, is open (because any disk D¢ we can get to we can use holonomy to flow off a
little further); but if there is a first time to>0 which we can’t reach,ksince we can flow both
backwards and forward from the resulting disk D¢o, we can go back slightly to a point we
have defined the function for, and then flow forward past the point we thought we had to
stop. d&

But unlike the case of Reeb stability, we can’t extend the map to t=0 for all points of
D¢; otherwise, as in the proof of Reeb stability, this would give a continuous map of a disk




into Ly with boundary -, proving that 4o is null-homotopic in its leaf, a contradiction.
This means, therefore, that there has to be a point x€int(D.) whose trajectory becomes
infinitely-long (just) before we reach t=0. This trajectory, since M is compact, must be
piling up somewhere - it passes through the same distinguished chart infinitely-often. It
therefore in particular passes through the same plaque infinitely-often, and so there is a
sequence f(x,t, ) limiting on a point y, for a sequence t, —0.

But this plaque sits on the leaves Ly, and in fact we must eventually have y€Dy,,
since otherwise the loops v, must always lie between f(x,t;) and y, so there is a sequefce
of points in 7, limiting on y, which is impossible (since these loops are a boundeékﬁsta,nce
apart (they lie above one another in the transverse direction)). But then one of the
trajectories from D, must pass through y (since this is true of every point of the D’s),
and we can then follow it back to D.. But then every trajectory passing sufficiently close
to y (in particular, the one we have been looking at!), flows back (over a finite distance, so
has only bounded spread from the one through y) to hit Din the same amount of ’time’.
Therefore the trajectory through x (since it passes arbitrarily close to y infinitely-often)
hits D infinitely-often. Therefore there is a first time to in which it happens.

We therefore have for this time to that DyoND.# 0, and so since veNyo=0 (they lie in
different levels of the annulus, which is embedded), one of these disks contains the other.
But if D, contains Dyg, then it also contains 49, implying the D.UA is not embedded; so
we have that D.CDyg.

Exercise: Show that the first time that a trajectory hits D, again is the same for
all such trajectories (Hint: look at the argument below, and notice that it shows that any
trajectory, which misses D, when another one hits, never hits D, (there is a first time one
of them hits D, again)).

Therefore, if we imagine the image f(D X [to,€]), the top D, x{e} gets glued to a disk in
the interior of the bottom. It is therefore a solid torus ‘bent’ at the annulus (D, x[to,€]) =A
(see figure below).

But if we look at the other annulus B=Dyg\int(D,), every trajectory passing through

2




those points must have a limiting value (i.e. they have finite length). This is because
otherwise, as above, each trajectory would have to pass through the disk D, infinitely
often. But up until it hits the annulus B it could have hit only finitely-many times (since
the trajectory has finite length up until then) and the transverse vector field points outward
all along the boundary of the solid torus (except along A where it is parallel), so once you
go out of the solid torus (which is where the trajectories are going) they can never get
back in. So they clearly can’t hit D, infinitely-often.

But now if we look at the image of the annulus B as t—0, we get an annulus in Ly,
except that its ends (both lie on A and therefore) get glued to one another (see figure
below). Since the points on B are all distinct, their limits are all distinct, so the only
identifications occur at the ends, so we end up with an (embedded) torus contained in Lg;
consequently Ly is a torus.

So we have a solid torus f(D. x [to,€]) surrounded by a torus Lg; in between we see the
annulus B crossed with an interval, glued together along dBxI (with a shift designed to
avoid the corner in the solid torus). Therefore, the union of the two pieces is a solid torus
bounded by the torus Ly. The leaves in the solid torus consist each of one of the disks
D., (V‘(’fl(l;—hﬁ ave boundary in the corner of the interior solid torus, glued to a sequence of
annuli (flowed off of the annulus B) which string together to spiral out to the torus Lo (see

figure). In other words, this is a Reeb foliation of the solid torus!

y
T=q,
This completes the proof of the third segment of our outline of Novikov’s theorem.
We'll finish with a few observations about the Reeb foliation.

Fact: If a foliation F of M has a Reeb component bounded by the torus leaf T, then
no loop in M everywhere transverse to F passes through T.

We more or less already noticed this before: we can assign a normal orientation to
the leaves in the solid torus bounded by T so that it points everywhere inward along T
(even though the orientation might not extend over the entir transverse foliation in M).

Any tangent vectors to an (oriented) transverse arc which passes through T (imagine it
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passing into the solid torus) starts and stays within 90 degrees of the transverse vector
field (otherwise it must pass through 90 degrees, hence is tangent to the foliation). But in
order to get out of the solid torus again, it would have to make an angle of greater than
90 degrees with the normal orientation, an impossibility. So once you get into the solid
torus, you can’t get out again; so an tranverse path passing through T can’t be completed
to a transverse loop.

This fact prompts a definition:

Definition: A codimension-1 foliation F of M is called taut if for every leaf L of F
there is a loop v transverse to F which passes through L.

The above argument shows that taut foliations have no Reeb components, and there-
fore enjoy all of the properties which we are proving about foliations without Reeb com-
ponents. In fact, we will, after proving those results, begin to focus our attention almost
entirely on taut foliations. They are the kinds of foliations which Dave Gabai developed
powerful techniques for constructing, and used to study knots in the 3-sphere (in so doing,
settling several long-standing conjectures). It is the techniques that he (and Thurston)
developed that will occupy us in the second half of this class.

We should notice in closing that the statement above is not reversible; there are
foliations which are not taut, and yet contain no Reeb components. The easiest way to
do this is to build a transversely-oriented foliation with a separating compact leaf. For
example, take a once-punctured torus Ty, and foliate two copies of ToxS! by To x {pt.},
and then ‘spin’ each foliation at the boundary, to make the boundary a leaf (we could
think of this as taking T?xS! with foliation by T? x{pt.}, and turbulize along a loop {pt.
} and throw away the Reeb solid torus). Then glue the two foliated manifolds together.

This is in some sense the only way for the reverse to fail, in fact:

Fact (Goodman): Any leaf (in a compact manifold) which has no transverse loop
passing through it is a torus.

This to me is an amazing fact; it says for example that there is no way foliate a genus-
k handlebody (for k>1) with the boundary a leaf (otherwise (after passing to a suitable
covering to get a transversely-orientable foliation) you could glue two together to get a
foliation with Fy as separating leaf). Notice that the k=1 case is an exception - it can be
given a Reeb foliation!

Exercise: Show that any non-compact leaf in a compact manifold has a transverse
loop passing through it (Hint: it passes through a distinguished chart twice; pass to a
transversely-orientable foliation first). Can you find a non-taut foliation with only non-
separating tori? Think of ('Reeb’) foliations of annuli, and build one in the 3-torus.

The proof of Goodman’s result is analytical (you integrate a cohomology class along
the leaf to see that the Euler characteristic is 0); we’ll bump into some of the pieces later

on.




Foliations and the Topology of 3-manifolds

Outhine of class 10

Last time we saw how owr proof of Novikov's theorem will end: the existence of an
embedded vanishing cycle implies the existence of a Reeb component. Today we will hepin
to see how our proof will begin: how ecach of the three conditions of Novikov's theoren
(almost) implies the existence of an (imunersed) vanishing cycle.

For this we will need to introduce a new technique: the notion of the pullback (singular)
loliation. The basic idea for this is that codmension-1 [oliations are the natural setting for
something like a Morse theory of functions f:IF? -M? to make sense.

A Morse function is a smooth map F?—R? from a swlace F to Tuclidean space so
that the critical points of pof :F—R!(where p is the projection onto the third ('()or(liuatq:)
are discrete (so. if F is compact. finite) and non-degencrate. Tor our purposes. this
means that in a neighborhood of a critical point. the map looks like one of the following

pictures:

(Formally., these are supposed to he quadratic surfaces; paraholoids and hyperholoids.
We will only be concerned with their qualitative shape. however.) The idea is that we arce
I some sense trying to make the map I transverse to the horizontal foliation (meaning
that [ (TyF)+ Tyx) F =T R?). The point is that this lails (L (T I") =T ). F) only linitely-
often. and at the failures you get one of our pictures.

The main technical facts we need about such maps (and which we will not prove) is
that they form an open and dense subset of the set of all continuous maps [rom I' to R3.
50 any map can be deformed (through arbitrarily small deformations) to a Morse function.
and small enough deformations of Morse functions remain Morse. Let us now apply these
facts to the more general problem of making a map F-sM transverse to a foliation F of

M.



Since F is (assumed) compact, its image in M is compact, so we can cover the image
by finitely-many distinguished charts. Then F can be cut up into a finite number of small
enough pieces so that each piece maps into one of the distinguished charts. So each piece
can be thought of instead as being mapped by f into R3, where we have a horizontal
foliation. By a small deformation of f on one of the pieces (which we extend to a small
deformation across F), we can make f restricted to this piece a Morse function into the
distinguished neighborhood. By doing this to each piece in turn (by smaller and smaller
deformations, so that the map on the pieces we have already dealt with stays Morse) we can
then by induction deform the map f so that on every piece, the map to the corresponding
distinguished neighborhood is Morse. We can then use this function to pull back the
foliation 7 on M to a singular foliation on F. We do this by doing it locally; one each
piece, the map to the corresponding chart is transverse to the foliation by horizontal planes
(i.e., to F) except at a finite number of points. Therefore, except at the critical points, the
projected map to R? is a submersion, so the domain can be foliated by level sets (pof)~1(*)
(which actually is the same as f~!(horizontal plane)), at least, off of the critical points.
These foliations on} the pieces fit together to foliate F off of the critical points, because the
transition functions of the coordinate charts take horizontal planes to horizontal planes, so
they preserve the level sets of their corresponding pof ’s. If we add the critical points. we
get a singular foliation of I rather than a foliation; but by understanding what f looks like
at the critical points, it is easy to see how the level sets nearby are behaving, so we have a

very good picture of the foliation near the ‘center’ and ‘saddle’ singularities (see below).

X,

¢ e/’dQ/‘ So\f\(x\ﬂ'

So we get this singular foliation of our surface F. We call it the pullback foliation of
F under f, and denote it f*(F). One last technical point that we need: we can arrange
the map f (by a further small deformation) so that no two saddle singularities are joined
by an arc of the singular foliation. We do this by making sure that none of the critical
points of our maps on pieces lie in the same leaf of F. If two do, then since a single leaf

can hit a chart in only countably-many plaques, there are other leaves arbitrarily close

to each of the critical points, and by ‘lifting’ on or the other up (by carrying out a small
deformation supported on a neighborhood of the critical point; see figure below) we can
push the critical point into a different leaf, making it impossible to be joined by an arc
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(the arc maps into a single leaf). We can, in fact, just. to be on the safe side, deform the
map f so that all critical points are in distinct leaves. Since this can be done for free, we

assume we have done so.

The whole point to this kind of pullback foliation is that we can now use it to carry
out an Euler characteristic calculation of the surface F. Since our foliation F is (assumed)
transversely-orientable, we can use the transverse orientation of F to transversely-orient
the the pullback away from the singularities (choose the normal direction which is mapped
under f to a vector pointing to the same side of the leaf we’re standing on as the transverse
orientation of F). Then since F is (assumed) orientable, we can use this transverse orien-
tation as the first half of an orientation frame each point of F(away from the singularities),
then using the second half of the frame to tell us which way to turn, we can rotate our
normal orientation to orient the leaves of our singular foliation on F (again, away from the
singularities). In other words, we can think of our pullback foliation as having come from
a vector field (with zeros - the singularities are the zerns of the corresponding vector field)
But a vector field with isolated zeros (such as we have) can be used to calculate the Euler
characteristic of our surface F.

A quick look at the neighborhoods of our two types of singularities makes it evident
what the index of these zeros of the vector field are. At the center singularities we have
an index 1 zero, at the saddle singularities we have an index -1 zero. Therefore, the Euler
characteristic is the sum of these 1’s and =1's as we range over the singularities. But we
actually use this calculation in reverse; we will know what the Euler characteristic of our
surface is; this calculation tells us what kinds of singularities we must have! In particular,
since for our proof of Novikov’s theorem we will be applying this to (2-spheres and 2-disks
doubled along their boundaries, which are) 2-spheres, which have Euler characteristic 2,
and since you can’t get 2 by just adding up a bunch of 1’s, we can conclude that every
(Morse) singular foliation of the 2-sphere has at least 2 center singularities.

The way we will use this fact is that each of the three conditions of Novikov’s theorem
gives us a map of a 2-disk or a 2-sphere, where each satisfies its own special group-theoretic




condition. In the first, 7;(M) finite, since we can always find a loop transverse to our
foliation, some power <y of it is null-homotopic, so there is a map f:Dy—M such that
flop=" is transverse to the foliation. In the second case, we get a map of a 2-sphere into M
which is not null-homotopic. If we assume that M is not S2xS!, then (by Reeb stability)
none of the leaves of F are $%’s or RP?’s, so every leaf L (has universal covering R?,
and so) has m5(L)=0; so in particular, the map M cannot be deformed to a map into a
leaf (otherwise it could then be deformed to the constant map inside that leaf). In the
third case, we get a map f:D;—M such that flsp=+ is a loop in a leaf L, which is not
null-homotopic in that leaf. By *blowing’ the map off of L using the transverse orientation,
we can assume in addition that the map f is transverse to F near the houndary of the
2-disk (so any small deformation of f is, as well, and so the singularities of the resulting
pullback foliation live in the interior of the disk.

By gluing two copies of the map f together (in the case of the disk), the corresponding
foliations glue together to give a singular foliation of the 2-sphere whose singularities miss
the equator (since the foliation either is transverse to the boundary of the disks (in the
first case), so glues together to give a foliation without singularities along the equator,
or contains the boundary as a leaf (in the third case), which does the same). The Euler
characteristic calculation then tells us that our foliations must have center singularities
(which pair off top and bottom in the case of the disk), so we can conclude that in all
of the cases of Novikov’s theorem, the induced foliations on our disks and spheres must
always have center singularities.

We will use this fact to show that we can always find vanishing cycles (they will in
fact be the images of loops in the (possibly singular) leaves of our pullback foliations), by
picking a center singularity and walking out from it. We will show that either we must
eventually bump into a vanishing cycle, or we can redefine the map f to get a singular
foliation with fewer center singularities. Since we can’t remove them all, and we only start
with finitely-many, in the second case we would eventually arrive at a contradiction.




