Foliations and the Topology of 3-manifolds
Outline of class 11

Last time we saw how to use a map f from a surface F into our 3-manifold M to
pullback our foliation F on M to give a singular foliation f*(F) on F, and we noticed that
in the cases we will consider, F=D;,32, the singular foliation must always have a center
singularity (as well as possibly some saddle singularity). If we start walking away from
such a center, and consider the (possibly singular) leaves of f*(F) that we pass through,
initially they are loops (since this is true in the local picture around a center critical point
that we drew last time) that are null-homotopic in their leaves. What we must consider
is what happens the first time we encounter something other than such loops. If we think
about it for a bit, it’s not hard to see that one of five things must happen:

(1): We encounter a loop v which is not null-homotopic in its leaf. Since on one
side of this loop (the one we approached it from along f(F)) the normal fence hits nearby
leaves in (loops closely approximated by the leaves of our singular foliation, hence) loops
null-homotopic in their leaves, this loop 7 is therefore a vanishing cycle, and we can stop,
having found what this construction was trying to find for us.

(2): We run into a non-compact (possibly singular) leaf of £*(F). But this is actually
impossible. Such a loop, since F is compact, must therefore eventually pass arbitrarily close
to itself, and so can be short-circuited to a loop 4’ transverse to our singular foliation, as
we have done in the past. But since the loops around the center (which, you should
notice, are null-homologous) are limiting on this non-compact leaf, they pass arbitrarily
close to it, and so intersect the transverse arc we used to short-circuit our leaf. But
since the singular foliation can be transversely oriented (and hence oriented, by uniformly
turning the transverse orientation to one side or the other), the loops v and 4', when we
give them orientation, always intersect one another with the same sign (see figure below);
consequently, their homological intersection number is non-zero, implying both are not
null-homologous, which in a disk or sphere is of course absurd. So this case can’t happen.

(3): We run into another center singularity. We’ll deal with this case after the next
two; in this case we shall see we have a 2-sphere, and have found our one exception to the
rule of always finding vanishing cycles.




(4) We run into the boundary of the disk. But then we must be in the case that
the boundary is a leaf of our singular foliation (if the singular foliation were transverse to
the boundary, then the loops surrounding our center couldn’t be limiting on the boundary
(exercise - it’s because they don’t hit the boundary themselves). But in that case by
assumption this leaf of the singular foliation is not null-homotopic in its leaf, so we are

really in case (1), and we are done.

(5): We run into a saddle singularity. Since the part of the singular leaf containing
the saddle that we have in fact encountered must be compact (otherwise we’re in case (2)),

we must have in fact one of the following two pictures:

We can’t have our center circles running into 3 or more of the corners of the singular
leaf (because an arc joining two of the arcs emanating from the saddle forms a (separating)
loop, which must therefore be joining an adjacent pair of such arcs), so there are only these
two pictures (we can’t run into two saddles at once, since they map into different leaves
of F, so can’t be in the same singular leaf of {*(F)). Leaving the first picture alone for a
minute, let’s see how we can deal with the second case.

We know that all of the circles inside of the disk that the singular leaf cuts off are
null-homotopic in their leafs of F. If the loop « in the singular leaf is not null-homotopic
in its leaf, we are done: it is a vanishing cycle by the argument in case (1) above. If it
is null homotopic in its leaf, we then cancel the center and saddle singularity as in the

sequence of pictures below:

We first redefine f on the disk (containing the center) cut off by +v, so that it instead
maps into the leaf containing vy (using the fact that it is null-homotopic). This map is




no longer Morse; all of the points in the disk are degenerate critical points. But if we
‘smooth’ off the map in a neighborhood of this disk (basically by starting at the saddle
point and pushing it own into nearby leaves (going the direction that nearby non-singular
leaves lie) in ‘concentric arcs’ (see figure)), then we get a new Morse function, identical to
the first a.way' from a neighborhood of the disk, which now has one fewer center and saddle
singularities.

In the first case, we don’t deal with this center singularity right away. Instead we go
find a different one to deal with. There can be only finitely-many of these ‘inside-out figure-
8’s’ (since there are only finitely many saddles), and so if we look at the disks that each half
of the figure-8’s bound (they bound disks since they are embedded and are in a disk (or
sphere)), there is an ‘innermost’ one whose interior doesn’t intersect any of the figure-8’s
(each such disk contains fewer figure-8’s than our original one (it doesn’t contain the one
it bounds!); continue by induction). On this disk we find a singular foliation which (if we
ignore the ‘corner’ it has from running into its saddle on the boundary) actually satisfies
one of the conditions we used in our original Euler characteristic count; its boundary is a
leaf. So there must be a center we can carry out the singularity in this disk, and we can
carry out the analysis we have given above, to either find a vanishing cycle, or (possibly by
cancelling with the saddle that is in the boundary of our small disk) cancel the center with
a saddle, reducing the number of both. We can’t run into the figure-8 problem, because
they are all outside of our small disk - we would run into the boundary first, which is a

second-case example of a saddle.

So in every case (except (3)) we can always either find a vanishing cycle or cancel
a center with a saddle. Since we have never tampered with the singular foliation at the
boundary (in the disk case), we are always assured of having a center singularity, so if we
don’t find a vanishing cycle, it must be the case that we run out of saddles; we can deform
our singular foliation so that it only has center singularities (in case (3), we leave it as an
exercise to verify that the singular foliation actually already has no saddles - the foliation
is a disk foliated by concentric circles, with the boundary crushed to a point. Therefore,
our surface, in particular, is a 2-sphere!). If we still don’t run into a vanishing cycle as we
move out from a center, our only recourse then is case (3); so we are dealing with a 2-sphere
such that £*(F) is a singular foliation by latitudes (see figure). What we will show is that
if we assume that m,(L)=0 for all leaves of F, then this map f:52—M can be extended to a
map of the 3-ball inot M. Since f by assumption (in the case of a 2-sphere) is non-trivial in
72(M), this is a contradiction. Therefore it must be the case that 73(L)#0 for some leaf of
F. This leaf is then (either S? or RP? (these are the only surfaces with non-trivial 72 ), so
by orientation assumptions is) S2. So F has an S? leaf, so by Reeb Stability, M=S%2xS?,

and every leaf is a 2-sphere; this was our one exceptional case in Novikov’s theorem.
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We will build the extension of f to the 3-ball in steps. The main fact we will use is that

the homotopy disks that the latitude loops bound (which exist by the assumption that we
didn’t run into a vanishing cycle before we ran into the second center) can be lifted in a
continuous fashion to homotopy disks bounding nearby loops of the singular foliation. In
particular, if we imagine our circles parametrized by [-1,1], with -1 and 1 representing the

center singularities, then for every t€(-1,1) there is an e=¢€(t)>0 so that the singular disk
bounded by the loop v, lifts to leaves containing the loops within € of t (by the standard

picture of a center, the loops close to the center lift to null-homotopic loops all the way to
ond the leaf containing the center). We can also assume that €(t) is small enough so that the
loops we lift in the normal direction are freely homotopic to the corresponding loops of
PK<SK the pullback foliation f*(F), so we can in fact think of these lifts as lifting to the nearby
v2’s. Since the interval [-1,1] is compact, it can therefore be covered by a finite number of

these intervals, so we can assume we have chosen intervals [-1,s1),(r1,82),. - -,(Tn—1,5n),(n,1]

so that rk<mfor all k, and the loop at level ty lifts as above to both ry and syk+i.

Now pick xx such that ﬁk<xk<;k Then the disk at level tx lifts down and up to m:ckl

and xx (see figure below). The disks down below and above the loop at xj lift up and

down to two disks whose boundaries are 44k, so gluing the disks together, we get a map
of a 2-sphere into the leaf containing vxk (see figure). Because 73(L)=0 for every leaf, the
map of this sphere extends to a 3-ball, for each k. But then gluing all of these maps of the
3-balls together with the lifts of the 2-disks from xx to xx4; for each k, we get a map of
a 3-ball (a bunch of 3-balls glued end to end form a 3-ball) which on the boundary is our

original map f (see figure). So f is null-homotopic, a contradiction (as desired!).
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So we have now finished the first part of our outline of the proof of Novikov’s theorem.
We have found (except in the exceptional case M=S2xS!) a (singular) vanishing cycle v
under each of the three hypotheses of Novikov’s theorem. By general nonsense (transver-
sality theory), since we are dealing with a loop in a surface, we can homotope v so that

it is immersed and transverse to itself. It is still a vanishing cycle: it is still a non-limit
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cycle (on the same side) and non-trivial in its leaf, since being non-limit (and non-null-
homotopic) is invariant under free homotopy, and the lifted loops are still null-homotopic
in their leaves, since this is again unchanged by free homotopy.

What we will do now is show how to exchange this immersed vanishing cycle for an
embedded one; this will finish our proof of Novikov’s theorem, since we have already shown
how an embedded vanishing cycle sits in the torus leaf boundary of a Reeb component.
We will find this new, embedded, vanishing cycle in two steps. First we will show that we
can find an immersed vanishing cycle v (in a possibly different leaf of F) whose lifts to
nearby leaves along its normal fence are all embedded; then we will show how to use this
new vanishing cycle and its lifts to find an embedded vanishing cycle.

The first part will utilize two facts. The first is that if v is a loop in a leaf with n self-
intersections, then all of the lifts of 4 close enough to v have at most n self-intersections.
This is because the only way for a lift to intersect itself (over a point where v doesn’t) is
for it to ‘catch up’ to itself (see figure), so one of the lift must bump into v again first -
but we can clearly avoid that for a short time.

The lifts of 4 to the nearby leaves are null-homotopic loops which are immersed
transverse to itself. What we are going to try to do is to ‘unwrap’ these lifts to make them
embedded. To do that we need to understand what a null-homotopic loop in a surface
really looks like. With that in mind, we have the following

Proposition: If ¥ CF is a null-homotopic loops in a surface F, immersed transverse
to itself, then v can be transformed to an embedded (null-homotopic) loop (which therefore
bounds a disk) by the following three moves:
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The reader familiar with knot theory will recognize that these moves are the ‘im-
mersed’ versions of Reidemeister’s moves, by which a knot can be transformed to any
other knot isotopic to it.

Next time we will show first how this proposition allows us to find a vanishing cycle
with embedded lifts, and how to then find an embedded vanishing cycle. Then we will
show how to prove the proposition; it should come as no surprise that the proof will be by
induction (on the genus of F and the number of self-intersections of 7).
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OK, so that wasn’t the greatest lecture in the world. Or even close. Here’s what I
should have been saying.

We are trying to use an immersed vanishing cycle to find an embedded one. Since the
lifts of an embedded vanishing cycle are embedded (null-homotopic) loops, one way to get
halfway there is to find a vanishing cycle whose lifts are embedded. This is what we do
first.

Suppose y=", is our immersed vanishing cycle, with n self-intersections, and consider
the family of lifts v;, 0<t<e, of v to nearby leaves (where € is small enough so that all
of the lifts have at most n self-intersections). If all of the lifts sufficiently close to g
are embedded, then we are done. Otherwise, some nearby leaf (v, say) has some self-
intersections. By the proposition, we can deform 7, to an embedded loop by a sequence of
‘Reidemiester’ moves. Since the third one does not change the number of self-intersections
of 7., after a (possibly empty) sequence of type 3 moves, we must have a type 1 or 2 move.
This move then gives us an embedded disk (whose boundary §, consists of 1 or 2 subarcs
of 7.) which, if we let it (i.e., its boundary) flow back under the type 3 moves, gives an
immersed disk D¢ bounded by an (immersed) loop made up of 1 or 2 (immersed) subarcs
of 7 (see figure below). Since the subarcs live in the normal fence over v, they each can be
pushed down to subarcs of each of the ¥2’s. As in the proof of Reeb Stability, the immersed
disk D, can be flowed down in the direction of v to disks D; bounded by loops é;, made
up of the arcs we found above, at least for t’s near e. The collection of points (in the
normal fence over (one of the possibly two) intersection points for which these arcs give
loops which are null-homotopic in their leaves is open (since the null-homotopies flow up
and down). If this set is not all of the points in the fence, then there is a first point not in
the set. This point is still in a loop (if the arcs don’t close up, then the lifts of the resulting
path to nearby leaves are also not closed), and this loop is therefore a vanishing cycle.
This vanishing cycle (once we smooth the corners coming from the 1 or two intersection
points of y¢in . - see figure) has fewer self-intersections (at least 1 or 2 fewer) than vo. So
we would be done by induction on the number of self-intersections of the vanishing cycle
(since we can’t continue reducing the number of self-intersections).
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But if the set of){i_s all of the set, then the arcs push down to a null-homotopic loop
in the leaf containing o, then (see figure) we can use the null-homotopy to deform 7oto
a loop with fewer self-intersections. In the type one case, we merely erase the loop (and
smooth out the resulting corner; the disk can be used to deform the loop to the corner
point. This loop has at least one fewer self-intersection than the original (the corner we
smoothed out).

In the type 2 case, we can use the null-homotopy to interchange the two arcs; then
pushing them a little bit further apart, we can reduce the number of self-intersections by
two. This fails in exactly one case: when the two endpoints of the ‘digon’ are actually
identified (see figure). Then the interchange actually gives the same loop back. But in
this case The loop upstairs (as well as the one downstairs) is the square of a single loop
(consisting of one of the two arcs - its endpoints are identified). Upstairs, since the square
is null-homotopic, and since the fundamental group of the leaf is torsion-free (this is true
of any orientable surface), the loop itself is null-homotopic. Downstairs, since the square
is not null-homotopic, the loop is also not null-homotopic. So either the null homotopy
pushes all the way down, so the loop downstairs is a vanishing cycle (with at least one
fewer self-intersection), or it doesn’t; at the point it stops, we once again get a vanishing
cycle, with fewer self-intersections.

So in all cases, if a lift has self-intersections, we can find a new vanishing cycle with

fewer self-intersections. Therefore by induction we can find a vanishing cycle whose lifts
are embedded.
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It is worth noting that we can in fact have a non-embedded vanishing cycle whose
lifts are all embedded; we can build one by taking the meridian loop in the boundary of a
Reeb component and drag a piece of it around the torus in the longitudinal direction until
it intersects itself; see the figure.




We will now use this new ‘improved’ vanishing cycle to find an embedded vanishing
cycle. The idea is that since we now have embedded, null-homotopic, lifts, they bound
embedded disks Dy in their leaves. In particular this is true of «,; it bounds D,. What we
will do is look at the intersection of D¢ with the normal fence A over v. AND.CD;. is a
closed subset of D, which consists of a finite number of arcs of the loops 72, t<e(because
the fence is transverse to the leaves of F, and D, is contained in one; there are finitely-
many, since the disk is compact, so can hit a normal fence at only a finite number of levels).
There can be no closed loops of intersection; if there were, D, flows down along the fence
to a disk contained in itself, bounded by =, , t; <¢; but letting that subdisk flow down we
get another subdisk (contained in it) bounded by 74¢,, t2<t1; continuing inductively, we
could then in fact conclude the D, hits (in fact contains!) an infinite number of the 4;’s,

a contradiction. We therefore have a picture like in the figure below.

These arcs cut the disk up into pieces (subdisks, since no piece can have disconnected
boundary (because there are no loops)). Each piece therefore gives us a loop in the disk.
There are now two things to verify, to finish our proof:

(1): If all of these loops push down all the way to 7o as closed loops, then the image
of one of them is not null-homotopic. This implies, in the standard way, that one of them
pushes down to a vanishing cycle at some level (if it doesn’t push as a loop all the way

down, then at some point along the way it becomes a vanishing cycle).
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(2): If we take the loops consisting of the boundaries of a small neighborhood of the
union of these arcs (and the boundary - see figure above), then all of them are embedded
loops (for as long as they are loops). Therefore, whichever one, when pushed to a vanishing
cycle, is in fact an embedded vanishing cycle, completing our proof.

The first one is not too hard; it follows from the fact that the boundary of the disk
(i.e., 7e) can be written as a composition of these smaller loops (with change-of-basepoint
arcs attached, so they are all based at the same point). This follows quickly by induction
on the number of arcs in the disk; see the figures below. Each time we add one, we build
the composition by induction, by adding one piece of the arc at a time (so we are always
basically doing the same thing - subdividing one loop into two).
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The second one is a little tricky. As a matter of fact, it is SO tricky that I don’t
know how to prove it. I still think it’s true, but the proof I had in mind goes sour at
one point (I don’t know that what ought to happen does). BUT as it happens, I know
of a different way to show how to pass from a vanishing cycle with embedded lifts to an
embedded vanishing cycle - it’s amazing what deadline pressures will occasionally do to
increase brain function. The idea is to show first that the leaf containing the vanishing
cycle is a torus; then by using a little knowledge of what loops in a torus look like, we can
pretty easily trade our vanishing cycle in for an embedded one. We’ll do this next time.
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Today we will finish our proof of Novikov’s Theorem (modulo the result about de-
forming null-homotopic loops in surfaces - we won’t do this in class, but I will write it up
(soon) for these notes). We have shown that we can find (in all of the cases of the theo-
rem) an immersed vanishing cycle v in a leaf L, whose lifts to nearby leaves are embedded
null-homotopic loops 4 (and therefore bound disks Dy in the leaves containing them). We
will show now how to replace ¥ with an embedded vanishing cycle, which will complete
our proof, since we have shown that embedded ones are contained in torus leaves of Reeb
components.

The basic outline is to show, first, that the leaf L containing our vanishing cycle is a
torus. Then it is a relatively simple matter to show, using some facts about what loops in
a torus look like, to trade our vanishing cycle with an embedded one (which the original
is a power of). ‘

The first part can be seen by mimicking (to the extent possible) our construction of a
Reeb component in the case that the vanishing cycle is embedded. The point is that most
of the construction relied on the fact that the null-homotopic lifts were embedded, and not
that the vanishing cycle was. We start by building, as in that construction (from now on
called ‘the embedded case’), a map f:D.x(0,e] =M by starting at one of the lifts D, and
flowing along the trajectories of the transverse foliation from one disk to nearby ones. For
the same reasons as the embedded case, this map is defined for all t>0; if not, there is a
first t that the map doesn’t extend for all of the disk; but since there is a disk at that level,
it can either be flowed up to give us a way to extend past t (a contradiction), or the lifted
disk does not agree with the disk already there (see figure). But then the two disks we
now have glue together to give a sphere leaf of F, so the foliation consists of spheres, again
a contradiction (there’s no leaf to contain a vanishing cycle; all loops are null-homotopic).
This map is a local homeomorphism; this is because the disks Dy are embedded, so (since
we are flowing along the transverse vector field, which can’t send two nearby points to the
same point (by the uniqueness of solutions of differential equations). So small (cubical)
neighborhoods of points in D x(0,¢] are mapped injectively by f.
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But again, this map cannot be extended to t=0; if it could, it would give a map of a
disk into the leaf L, restricting to the loop v on the boundary, implying it is null-homotopic,
a contradiction. Then, again as in the embedded case, some trajectory out of a point x€D,
becomes infinitely long as t tends to 0, and therefore (again, as in the embedded case!)
this trajectory passes through D.infinitely-often as t tends to 0.

This is the point where we first break away from our embedded case; in that case, the
first time to that the trajectory returned, we had D,Cint(Dy); this was because D, did not
intersect any of the loops 4; for t<e. Here we cannot conclude this, because, since the loop
7 is in general not embedded (but the lifts are), the loops gamteesp must be intersecting
one another. However, because D, is compact, it can intersect only finitely-many of the
v¢’s. If it intersected infinitely-many, then (since the normal fence over v can be covered by
finitely-many distinguished charts) D, would intersect a chart in infinitely-many plaques,
giving an infinite set in D, with no limit points, a contradiction. Therefore, there is a
(in fact, infinitely-many) disks Dy, with Dy, ND(# 0, but D.NOD,=0. Consequently,
D¢Cint(D¢n). In fact, we can (inductively) arrange that Dy, Cint(Dy,,,) for a sequence of
tn’s tending to zero; just let (inductively) D¢, play the role of D in the argument above.

Now we rejoin our embedded proof. Look at our function f restricted between these
two disks; f:D, X [tg,e] =M. By the above, f(D¢x {€})=DCf(D,x {to } )=D10, so if we create
a new space X=D,x[to,e]/ , where (x,t9) (y,€) if f(x,to)=y=£(y,€), then f defines a map
from X to M (since we have identified point which get identified under f). X is, as in
our embedded proof, a solid torus whose boundary 3X=A0UA1 (see figure), a union of
two annuli, one Ag=0D, X [tg,€] mapping into the normal fence over «, and the other A,
mapping (injectively!) to D\De. D{h_\

For large enough n, the points of Dtn\yfzf(Al), as in the embedded case, come which
have limiting values as t tends to 0, although the argument is more difficult here than in
that case (since there we could argue that X was embedded in M (under the map f)). We
do know, as in the embedded case, that if a trajectory through a point of f(A;) becomes
infinitely long as t tend to 0 (which is the only way for a point not to have a limiting
value), then it must pass through D.infinitely-often. In particular, it must pass through
D, after time t,, i.e., after passing through f(A;). We will show, however, that this can’t
happen.

Because the trajectory hits D after it hits Dy,, we can short circuit the trajectory
when it returns to D, and turn it into a loop é transverse to the foliation and intersecting
A1, hence the (singular) torus f(9X); see figure. This loop misses (the image of) A (since
trajectories hitting it have limiting values (just apply the argument for large enough n
so that the normal fence from v to ;, does not hit D.- the usual argument shows that
D.eventually doen’t intersect the 4;’s, for small t)), and so all of the intersection points of
6 with T=f(0X) occur along A;as intersections of the trajectory. But these intersections
always occur with the same sign’(in the sense of intersection numbers on homology), so
the intersection number of § with T is non-zero, implying that both are non-trivial in
homology. But this is absurd; T bounds the (singular) solid torus f(X) (another way to
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say this is that the homology class of T is the image under f, of the homology class of 9X,
which is zero), so is trivial in Hy(M).

But now the annulus A; can be mapped, by the limiting values of the trajectories,
into the leaf L containing v; furthermore, since f(A;) is in a leaf of F and so transverse to
the trajectories, the same proof as outlined above show that this limiting map is a local
homeomorphism. Further, since JA; consists of two lifts of v, they both map to v and so
we can glue the ends of A; together to give a torus, which (the induced function) f maps
into L as a local homeomorphism. We therefore get an immersion of a torus T into L, but
since T and L have the same dimension, { is therefore a covering projection. Since its image
is compact (hence closed); if it isn’t all of L, then the image has a boundary point. This
point comes from a point upstairs, but then a small neighborhood of this point maps to a
neighborhood of the point downstairs, contradicting the fact that it is a boundary point
of the image. Therefore, Every inverse image of a point downstairs has a neighborhood
mapping injectively; but since T is compact, a point can have only finitely-many preimages
(otherwise the inverse image has a limit point, and the map couldn’t possible be locally
injective at that point). From here it is easy to show that the map has the local triviality
property of a covering map; we leave it as an exercise.

So we now have a covering map form a torus T our leaf L containing the vanishing
cycle; but the only (oriented - M is orientable and F is transversely-oriented) surface
covered by a torus is a torus; just argue by Euler characteristics (x(L)=ny(T)=0 for some
n). So the leaf containing « is a torus.

Now that we know our leaf is a torus, it is a pretty simple matter to find an embedded
vanishing cycle. To do it, we need to look at (non-null-homotopic) loops in a torus T. If we
think of T as the quotient of its universal covering R? by the covering translations given
by h(x,y)=(x+n,y+m) for n,meZ. If we take an essential loop v in T, and assume it is
based at xo= the image of (0,0)), then when we lift it up to R? based at (0,0) we get a
path 4 whose other endpoint (also maps to xq so is) (a,b) for some a,b€Z. If we instead
take the straight line segment ¢ from (0,0) to (a,b), then they are homotopic rel endpoints
(since together they form a (null-homotopic) loop), and this homotopy projects to T to
give a (based) homotopy from v to the image of £ (call it 7).

But if we write d=gcd(a,b), then ¢ passes through (a/d,b/d), and the line segment
from (0,0) to (a/d,b/d) projects to an embedded loop in T (otherwise two points of the
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lift differ by integer coordinates, so (by translating the first point to (0,0)), we get another
integer point on the line segment between (0,0) and (a/d,b/d) (contradicting (exercise!)
the fact that d is the ged). Further, y=7¢ in m;(T), since 79 lifts in R2 to the line segment
from (0,0) to (a,b).

But the loop 7 is a vanishing cycle! We see this in two steps.

First, 7 is a non-limit cycle. This is because ~ is a non-limit cycle, so 79 is, because
it is homotopic to . But if 7 were not a non-limit cycle, then in the normal fence over
7 we see lifts of 7 which don’t close up, arbitrarily close to 7 (see figure). But for any
point in this fence which are not fixed by the return map defined by these lifts, it is also
not fixed by the d*! iterate of the return map (which is actually the return map of 79);
this is just a fact about order-preserving homeomorphisms of an interval. If f(a)<a, then,
inductively, f**1(a) < f*(a), since otherwise (see figure) the first time the sequence reverses
itself (f**!(a) = f*(a) or f’gl(a) > f™(a)) we can easily find two points mapped to one
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4 is not null-homotopic, 7 is, and since the lifts of 74 are loops null-

But since 7
homotopic in their leaves (since they are homotopic (in the leaves)to the lifts of « - just lift
the homotopy downstairs), the lifts of 7 are null-homotopic. This is because the lifts of the
d*! iterate of 7 are the same as the d*! iterates of the lifts of 7, and the fundamental groups
of the leaves are torsion-free (as is the fundamental group of any orientable surface). So
since the d'! iterate of a lift is null-homotopic, the lift itself is null-homotopic.

Therefore the loop 7CT is an embedded vanishing cycle, and we are done!

Our next task will be to improve on Novikov’s result (2); if M admits a foliation
without Reeb components and M#S2xS!, then m3(M)=0. The improvement is Rosenberg’s
theorem (proven not long after Novikov’s proof appeared) - under the same conditions,
M is irreducible - any 2-sphere embedded in M bounds and embedded 3-ball. The proof
parallels, in many ways, the construction of immersed vanishing cycles - we simply take
care to insure we maintain an embedded sphere as we follow through it.
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Today we prove:

Theorem (Rosenberg): If M is a closed orientable 3-manifold, not S2xS!, and M
admits a a transversely-orientable foliation F without Reeb components, then M is —bf
irreducible: every (smoothly) embedded 2-sphere in M bounds a 3-ball.

We shall prove it by following our proof of Novikov’s m2(M)#0 implies F has a vanish-
ing cycle argument. The only added wrinkle in this setting is that we must always insure
that when we move our 2-sphere S (as we do in Novikov’s argument) we always still have
an embedded 2-sphere. We will actually do this last part by surgery, cutting our 2-spheres
into (simpler) 2-spheres; then we prove that if after surgery the two 2-spheres bound balls,
then the original 2-sphere bounds a ball. _

We begin however with a simplification. Under the hypotheses of the theorem,
Novikov’s theorem implies that all of the leaves of F are m;-injective in M, and since
none of them are 2-spheres, they each therefore have universal cover R%2. Therefore if
we lift F to a foliation F of the universal cover M of M, then for every leaf L of ¥
(which projects as a covering map to a leaf L of F), the composition (using the obvious
maps) ;(L)—m (M)—m (M) is (equal to m( Iy )—71(L)—7 (M), which is) injective, so
T (i)—>w1(1\7[)=0 is injective. So every leaf of F is simply-connected (and not equal to a
sphere), hence is a plane. So F is a foliation of M by planes.

What we will actually show is that a simply-connected (possibly (certainly!) non-
compact) 3-manifold which is foliated by planes is irreducible. This suffices to prove our
theorem, since:

Proposition: If the universal cover of a 3-manifold M is irreducible, them M is
irreducible.

Proof: This is completely analogous to our proof that a null-homotopic, embedded
loop in a surface bounds an embedded 2-disk. We lift our 2-sphere to a collection of
(disjoint) 2-spheres in M; there they each bound balls. Then we show that the balls they
bound are all disjoint from one another, therefore any one of them maps down injectively
to M to give a 3-ball bounded by our 2-sphere. We leave the details as an exercise.

So we now prove our theorem under the assumption that M is simply-connected and
F is a foliation by planes. Given an embedded 2-sphere S in M, we can wiggle it slightly to
make the inclusion map i:S—M a Morse function w.r.t. the foliation F (since S is compact,
hence can be covered by finitely-many distinguished charts). This gives us, as in Novikov’s
theorem, a singular foliation i*F on S. We proceed now, as before, to try to cancel all of




the saddle singularities against the centers (there are more centers than saddles, by Euler

characteristic considerations). But before starting this, we need:

Lemma: All (singular) leaves of i* F are compact, in the leaf topology.

Proof: The only other alternative is that some leaf contains an infinite arc (see figure).
But then since this leaf is contained in S, which is compact, it must pass arbitrarily close
to itself, so we can short-circuit it to a loop. But this loop, thought of in M, consists of an
arc in a leaf of F together with a short transverse arc. But this loop can then be deformed
slightly to a transverse loop (Because F is transversely-oriented; M has no (non-trivial)
double covers!), which must of course be null-homotopic. But then the proof of Novikov’s
first argument goes through to show that some leaf of F has a vanishing cycle, which is
absurd; every leaf of F is simply-connected, so certainly cannot contain a loop non-trivial

in its fundamental group!

Now if we pick a center singularity of i*(F) and work our way out (as in the previous
argument), only two things can happen; either we bump into another center singularity
(so i*(F) has no saddles, which is what we want), or we bump into a saddle singularity
(once or twice) - the other possibilities considered before are rule out, because we can’t
find a vanishing cycle and S has no boundary.

If we bump into a saddle, we can (after possibly choosing a different center, as before),

agsv"’f“/j that we run into it only once, so we have a picture like the one below. The arc of the singular
leaf that forms the loop 4 we have run into is embedded in S, hence embedded in the leaf
L of F containing it. Since it must be null-homotopic in the leaf, it therefore bounds
a disk D in L. Now look at DNS; since D is contained in a leaf, this intersection, in S,
consists of a (finite) collection of the leaves of i*(F). Since D already contains a (saddle)
singularity of i*(F) (in its boundary), we can assume that it contains no other singularities
(by having arranged that the singularities of i*(F) are in distinct leaves of F). Therefore
the intersection looks like, in D, a collection of simple loops, and possibly the other arc
joining the saddle singularity to itself (see figure). If we do have the other arc, we carry
out the argument below for the subdisk of D that it bounds.
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The loops in this disk are are in both S and the leaf L, so they are loops of the singular
foliation i*(F). If we pick an innermost such loop 7 (see figure), then we can surger S along
the disk D’ in D it bounds; we replace S with two spheres, each consisting of one of the
disks in S that the loop v bounds, together with the disk in D that v bounds; which we
then push off of one another slightly. We can deform these spheres with corners to smooth
spheres which are Morse, by introducing a pair of center singularities near D'. Continuing
by induction, we can arrange that this collection of 2-spheres now miss D'(except for the
one that contains its boundary!). But then if we also surger S along D' (see figure), we get
a collection of 2-spheres where now we can cancel a center (one of the on&{we just created!)
against our saddle (there are two cases; see figure). Therefore we get a collection of 2-
spheres (obtained by surgering our original one) whose total number of saddle singularities

has decreased. Then we have: /__Jff\_
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Proposition: If SCM is a 2-sphere and D is a disk in D with SND=0D=+, splitting
S into disks D*,D~, and both of the 2-spheres St=D+UD,S~=D~UD bounds a 3-ball,

then S bounds a 3-ball.

Proof: The proof is by picture! If both bound 3-balls (B*,B~ respectively), then
OB*NIB~=D; if int(B*)Nint(B~)=0, then it is easy to see (see figure) that BYUB~is a

3-ball, with boundary S; if int(B*)Nint(B~)# 0, then again, it is easy to see that one
contains the other (say B-CB*), and then B*\B~ is a 3-ball with boundary S.

We use this result and induction on the number of saddles in the collection of 2-
spheres to show that our original sphere S bounds a ball. Since after cancelling the center
and saddle, the total number of saddles in the 2-spheres has decreased, by induction we




can assume that all of the resulting 2-spheres bound 3-balls. Then the result above (and
induction on the number of 2-spheres!) implies that our original S bounds a 3-ball.

This leaves the base case - no saddles. We assume we have a 2-sphere S, in Morse
normal form with no saddle singularities. Therefore the singular foliation consists of two
center singularities, with a collection of (parallel) loops in between. These loops can be

parametrized by a transverse arc [-1,1] running between the centers, so we will call the
loops 7¢, t€(-1,1). Each is an embedded loop in a leaf L; of F, so bounds a disk D, in that
leaf.

Proposition: For t1#ts, D¢, "Dy, =0.

Proof: If D, ND,# 0, then since D¢, NOD¢,=~;, Ny, =0, it must be the case that
one contains the other (the alternative is that the leaf containing them is the union of two
disks with disjoint boundary, which is a 2-sphere), say Dy, CD¢,. But then the arc [t1,t2] in
S together with an arc in Dy, joining 4, to ¥, is a loop which, as usual, can be deformed
to a loop everywhere transverse to F, a contradiction.

Now we can finish the proof, using an argument similar to that which we gave in
Novikov’s theorem. Each disk Dy can be flowed up and down the other nearby disks, and,
in this case, since the disks are all embedded, this flow can be realized as an embedding
of Do X [to-€,t0+€] into M, with boundary Dy_U(U{7:to-e<t< to+€}NDy4e; see figure.
Notice that this is a 3-ball! Therefore, as before, using the compactness of [-1,1] we can
find a finite number of Dy’s so that surgering S along the entire finite collection gives a
collection of 2-spheres each bounding a 3-ball Dy, x[ti-¢,ti+€]. But then the proposition
above and induction implies that the original 2-sphere S bounds a 3-ball!

Note that we have proved, for example, that R3 is irreducible (this is known as
Alexander’s Theorem), since R® can be foliated by (horizontal) planes. When you get
right down to it, though, this is actually all we have proved: Palmeira has shown, in fact,
that any simply-connected n-manifold that can be foliated by (n-1)-planes is homeomorphic
to R™! But demonstrating this result would take us too far afield. We will instead continue
with our current approach; our next task is to prove a generalization of the construction in
this proof (centers and saddles can be canelled against one another) for surfaces of higher
genus. This result will be a key step in our proof of a theorem of Thurston that a compact
leaf of a Reebless foliation is ‘topologically minimal’.
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Our next goal is to show:

Theorem (Thurston): If F is a (transversely-orientable) foliation without Reeb com-
ponents of the (compact, orientable) 3-manifold M, and if F is a compact leaf of F, then F
has minimal genus in its homology class, i.e., for any (possibly not connected) surface S with
[S]=[F] in H2(M) (or H2(M,0M), whichever is appropriate), we have genus(S)>genus(F).

We will need to develop two new techniques for our proof. One is a generalization
of the result we used for Rosenberg’s theorem - we can, by isotopy, cancel centers against
saddles in the singular foliation of more general surfaces. This will be our topic for today.
The second is an understanding of the Euler class of a 2-dimensional vector bundle (like
TF), and how to calculate it using a singular foliation.

The basic content of the first technique is contained in:

Theorem (Thurston, Roussarie): If Fis a foliation without Reeb components in the
3-manifold M, and F#S5? is an embedded surface in M with = (F)—n;(M), then F is
isotopic to a surface such that the inclusion is a Morse function (except at a finite number
of circle tangencies) with no center singularities in the induced singular foliation.

A surface F in M with 71 (F)—m;(M) is called an (algebraically) incompressible sur-

face. It is not hard to see that this condition implies the condition of (geometric) incom-
pressibility: for any disk D in M with DNF=0D=4, there is a disk D’ in F with 0D'=+.
This is because 7 is an embedded loop in F which is null-homotopic in M, hence in F, so
bounds a disk in F. It is actually true that, for 2-sided surfaces (ones for which N(F)\F is
not connected), the opposite is true: geometric incompressibility implies algebraic incom-
pressibility. This is the celebrated Loop Theorem. We will, however, not be making use of
this direction in our proof.

Proof: The basic idea is to mimic, as much as we can, the construction we gave in
our proof of Rosenberg’s theorem. We start by deforming F slightly to make the inclusion
a Morse function. If it has no senter singularities, we are done. Otherwise, we start at
a center and start walking out, looking at the loops of the singular foliation. As before,
only a few things can happen - either we run into a saddle (once or twice), we run into
another center, or we run into a loop which is not null-homotopic in its leaf. But the last
two in fact can’t happen, since the first of them implies that F is a 2-sphere (ruled out
by hypothesis), while the other gives us a loop in a leaf, not null-homotopic in that leaf,
but demonstrably null-homotopic in M (it bounds a disk in F), contradicting Novikov’s

theorem. So we therefore run into a saddle; as before, this can happen in one of two ways




(see figure). Unlike the cases we have dealt with before, we cannot avoid the second case

- it i1s why we must allow for circle tangencies.

N2

Let us deal first with the case we already understand - when we run into a saddle once
when moving out from a center. This gives us an embedded loop in a leaf L of F; since
it is null-homotopic in F (hence M - it bounds a disk in F'), it is therefore null-homotopic
in L, hence bounds a disk D in L. If we look at DNFCD, after possibly passing to a sub-
disk as before, we can assume that this intersection consists of loops in D. If we pick an
innermost such loop, bounding a disk D' missing F, we get a disk satisfying the hypotheses
of (geometric) incompressibility; therefore there is a disk D" in F bounded by the same
loop. Together these disk form an embedded sphere, which by Rosenberg’s theorem bounds
a ball. We can then use this ball to isotope F, taking D" to D'; pushing it a little farther
isotopes F so that (at least) this innermost circle disappears. After the isotopy F now
looks like the figure below; we seem to have introduced a new center singularity on F, but
because the singular foliation on D" had the boundary as a leaf, there is at least one center

singularity for F in the disk, so we have in fact not increased the number of centers by this

isotopy.
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Then continuing this process we can make DNF=0D; then as before we can cancel
the center and saddle with one another, reducing the number of centers. After doing this
a finite number of times, we can assume that all of the centers that are left (if any) meet
their corresponding saddles twice. Notice that we must consider this case, rather than
ignore it as we have done before; there is no guarantee, since we are not in a sphere, that

the two arcs that join the saddle to itself form null-homotopic loops.
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We can turn two arcs containing the saddle point into a loop é null-homotopic in its
leaf L; by breaking the double point of this loop (see figure) we can make it an embedded
loop 7 (freely-homotopic to ) hence) null-homotopic in L. Therefore it bounds a disk
D in M. There are now two cases to consider, depending on which side of v this disk is. If
it contains the saddle point, then the disk pinches down to a pair of disks, each bounded
by one of the arcs joining the saddle. But then inside each of these, by the construction we
did before, contains a center whose saddle is of the first type, a contradiction. Therefore
we can assume that the disk does not contain the saddle point, so this surface F intersects
this disk in a finite collection of loops. Then the usual innermost loop argument given
above isotopes F to a leaf missing D in its interior. Then by pushing the disk in F that
this bounds to a disk slightly above D (see figure), we can assume we are in a situation
in the figure; but then by pushing this disk down into the leaf L and smoothing things
out, we can cancel the center and saddle, at the expense of introducing a circle tangency
into the singular foliation. Doing this for all of the centers, we can remove them all by
introducing circle tangencies. Therefore after an isotopy, F has no center singularities, and

possibly some circle tangencies.

We should note that in many circumstances we can remove circle tangencies in F;
if the loop representing the tangency has non-trivial holonomy around it in the singular
foliation of F (see figure), we can, by pushing the tangency down a little to make the loop
transverse to the singular foliation, so the inclusion is now Morse near the loop, too.




We can also improve on this result, if we assume the F is a torus and F is taut:

Theorem (Thurston, Roussarie): If F is a taut foliation of M, and T is an incom-
pressible torus in M, then T can be isotoped so that either T is everywhere transverse to

F,or T is a leaf of F.

Proof: By the above, we can isotope T so that the induced foliation has no centers.
Since x(T)=0, it has no saddles either. Therefore it only has circle tangencies. What we
will do it to try to isotope the tangencies away. Because we can assume that the torus T
‘turns around’ at the tangency « (see figure - otherwise we can pull T transverse to F), we
can try to start pushing the annulus around 4 down into the nearby leaves. Now, one of
three things happens: we run into another circle tangency on one side but not the other,
allowing us to cancel the two circles with one another, reducing the number of tangencies
and finishing our proof by induction. Or, we run into tangencies on both sides - if they
are different tangencies, we can turn the three into one, and continue (actually, this can’t
happen - the two tangencies came from saddles, so we would have had two saddles in the

same leaf), or it is the same circle; it this case, pushing the annulus around our first circle
into the leaf containing the second, we push T into a leaf of F, hence it is a leaf of F. The
final possibility is that we keep pushing our annulus down forever; although, in the torus,
this looks as if we are limiting on two loops of the induced foliation of T. This situation
should sound familiar; it is entirely analogous to the situation we studied when we built a
Reeb component.

As we push the annulus A down into the leaves of F, we build a function from A x[0,00)
to M, and a point must trace out a trajectory that is infinitely long (otherwise, there is
a limiting map of an annulus into a leaf, which we could push further). This trajectory
must pile up somewhere in M, so passes through A again. Taking the first time t that the
trajectory returns to A, we can create a map from A x[0,t}/~ which is a torus crossed with
an interval, bent at the boundary (see figure) into M. Then the points in the two annuli in
the boundary which are also in leaves all have limiting values as t approaches 0. As before,
these limiting leaves are then tori, and in between we see what is known as a cylindrical
component: it looks like the analogue of a Reeb component in an annulus, crossed with

a circle (see figure).
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It only remains to show that a cylindrical component cannot exist in a taut foliation;
this should also be a familiar argument. The leaves of a cylindrical component can be
transversely oriented so that the normal vectors point everywhere into the component.
But then we cannot find a loop everywhere transverse to the foliation passing through
either of the torus leaves; any loop passing into the cylindrical component cannot get back

out again.

It is worth noting that we can build Reebless foliations in, for example, the 3-torus, so
that there are incompressible tori that cannot be isotoped to be transverse to the foliation
or to be a leaf. Such a foliation must of course contain a cylindrical component; we leave
actually constructing one (and showing that there is such an incompressible torus) as an

exercise.
The above result was used by Thurston, in his thesis, to prove:

Theorem: If M is a circle bundle over a surface, and F is a taut foliation with no

compact leaves, then F is isotopic to a foliation everywhere transverse to the circle fibers
of M.

The basic idea of his proof was to take an essential loop in the surface; its inverse
image is an incompressible torus in M, which we can then make the foliation transverse to
(we imagine moving the foliation and not the torus). With a bit of work, an inductive use
of the above theorem allows us to conclude his result. I've never had much motivation to
look deeper into the proof, however, because of

Theorem (me!): If F is a foliation with no compact leaves in a Seifert-fibered space
(= a (compact) manifold foliated by circles), then F is isotopic to a foliation everywhere
transverse to the circle fibers of the Seifert-fibering.
whose proof I understand a whole lot better! The theorem is actually the subject of that

reprint I had lying out on the table during this class; but its title should make it clear that
the proof would take us far off the track we are now following, so we won’t go through it.

Next time we will look at the Euler class of a 2-plane bundle (like TF), and use what
we learn to prove the topological minimality of leaves of Reebless foliations.

g = QX

xS
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Last time we saw how we could isotope an incompressible surface F in a manifold M
with a Reebless foliation F so that F had no center singularities in its induced singular
foliation, at the expense of introducing circle tangencies hetween F and some of the leaves
of 7. Therefore, all of the singularities of the foliation on F have index -1 (when viewed
from F). Today we will see how to use this fact to prove Thurston’s theorem; for this we
will need to explore the concept of the Euler class of a bundle.

To simplify things somewhat, we will restrict our study of the Euler class to the
situation in which we will actually use it. Suppose we have an orientable 2-plane bundle
£ over a reasonable space (like for example a manifold M). As an example, we have the
tangent space TF of a transversely$-oriented codimension-1 foliation on an orientable 3-
manifold M (the transverse orientation allows us to choose an orientation for the planes of
our bundle, by making it the first element of an orthonormal frame at a point; the other
two vectors, in order, give us a frame for the tangent plane. Then the Euler class e(¢) of £ is
an element of H2(M), the second cohomology of M with coefficients in Z, which represents
the obstruction to the existence of a nowhere-zero section of ¢ (e.g., a nowhere-zero tangent
vector field, in our case).

To define it, we will define a 2-cochain (a function from formal sums of 2-dimensional
simplices to Z) which is zero on the boundaries of 3-simplices (hence is a 2-cocycle). To
make it the obstruction to the existence of a nowhere-zero section, we define it in terms a
partially-constructed nowhere-zero sections.

Given a 2-simplex in M 02, we can arbitrarily choose non-zero vectors at its vertices.
Then, since the 1-simplices in its boundary are contractible (so the bundle &, restricted to
the 1-simplex, is trivial), we can define a nowhere-zero vector field over each 1-simplex, and
we can (by changing it in the vicinity of the vertices, as necessary) assume it agrees with
the ‘vector field’ already defined at the vertices (see figure). But since the 2-simplex itself
is contractible, the bundle ¢|,2 is #gelf trivial, so we get a commutative diagram like below,
which allows us to define a map from 8o? to S!. This map is a map from an (oriented
- 2-simplices carry a standard ‘counterclockwise’ orientation) circle to an (oriented - the
circle inherits an orientation from the orientation of the 2-planes (again, counterclockwise))
circle, so it has a well—deﬁned winding number w(o?). Then we define e(¢) of a 2-chain
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changing this section (by, for example, adding several windings along one of the 1-simplices
- see figure) will certainly change the winding numbers, so will change the value of the Euler
class. The point, however, is that for 2-cycles, the value of the sum is independent of these
choices. This is because if we change our choice of vector field on a 1-simplex, it changes
the winding numbers associated to every 2-simplex that contains it. So since for a 2-cycle,
which is a 2-chain for which the numbers associated to each of its boundary 1-simplices
(with signs coming from orientations) sum to zero, any changes we make to the sections
cancel out, so the value the Euler class assigns is unchanged (see figure below)

This at least gives us a function from 2-cycles to Z. With a little bit more work, you
can actually show that e(¢) is a well-defined function from 2-chains to Z, up to the choice
of a 2-coboundary, i.e., the difference of functions defined by two choices of sections over
1-simplices is a 2-coboundary. To show that e(¢) os a 2-cocycle, it suffices only to show that
it takes value 0 on any 2-boundary, i.e., it is 0 on the sum of 2-simplices in the boundary
of a 3-simplex. But since we’ve seen that how we define the section on the 1-simplices is
irrelevant, we can simply choose a section that makes it obvious that the resulting sum is
0 (since all of the winding numbers are 0 - see figure). So we get an element e(£)€.
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From this definition it is easy to see that e(¢) is natural; if F is a subcomplex of
M (e.g., an embedded surface in M), then ef|p=i*(e(¢)€H?(F), where i* is the map on
cohomology induced from the inclusion map i. This is because the winding number around
the boundary of a 2-simplex will be the same, whether we pretend the simplex is in F or
is in M. (In fact, this naturality extends to any continuous map from a space X to M; the
Euler class pulls back to the Euler class of the pull-back 2-plane bundle. In other words,
the Euler class of the pullback is the pullback of the Euler class!)
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It is also easy that the Euler class of a bundle over an (orientable) surface F can be
calculated by counting indices of a singular vector field on F. To see this, just remember
that Hy(F)=Z, generated by the fundamental class [F] (which is just the sum of all of the
simplices of F, for some triangulation), so e(¢§)€H?(F)=Z is basically determined by its
value on [F]. But if we choose a singular vector field on F with at most one singularity
in each 2-simplex (think of this as starting with a singular vector field and choosing a
fine enough triangulation around it). then the winding numbers of simplices which have
no singularity in it is zero, since winding number is really the obstruction to having a
map S!'—S! which extends to D;—S?, and simplices without a singularity clearly extend

their maps on the boundary. But then the Euler class evaluated on [F] is then the winding
numbers of the vector fields around the remaining simplices, which are disks each containing
a simplex, and this is basically the index of the vector field at that point (where some care
must be made in determining the sign, since that is a matter of convention between the
orientation of the simplex (which orients its boundary) and the orientation of the bundle
(which orients the fiber we projected to)). '

So for example, of I is an (orientable) surface and ¢=TF is its tangent bundle, then
e(TF)([F]) can be calculated by finding a vector field on F with isolated zeros (which is
the short way of saying a vector field in TF), and adding the indices of zeros together,
keeping track of the sign conventions. But in this case the orientation on TF comes from
the one on F, so the orientations are so chosen so that the index is equal to the winding
number. Consequently, e(TF)([F])=the sum of the indices of the zeros of a vector field
on F. But we’ve already seen how to give a different name to this number; it is the Euler
characteristic of F. So we have shown:

e(TF)([F])=x(F) for any orientable surface.
We are now just about ready to apply these ideas to prove Thurston’s theorem. What
we have is a foliation F without Reeb components of a 3-manifold M, and a compact leaf

F of 7. We also have a (possible disconnected) surface S representing the same homology
class as F in M: [S]|=[F]eH2(M). Therefore we of course have:

e(TFs)[S] = e(TF)[S] = e(TF)[F] = e(TF]r)[F]
where the middle equality is because [S]=[F], and the outer two equalities are because of

the naturality of the Euler class. But because F is a leaf of 7, TF|r=TF, so e(T.F|r)[F] =
e(TF)[F] = x(F)=2-2genus(F). Consequently, we have:
e(TF|s)[S] = 2 — 2genus(F)
Therefore, if we can show that
X(T) < e(TF|)[T]

for every component T of S, then we would be done: we would then have
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2-X2genus(T) <X (2-2genus(T))=E(x(T)) = E(e(TF|7)[T]) = e(TF|s)[S]=2-2genus(F),
so X(genus(T))=genus(S)>genus(F).

This is what we will in fact show, at least for T not equal to a 2-sphere. Notice that
technically the statement is false for 2-spheres, since Rosenberg’s theorem tells us that any
embedded 2-sphere hounds a 3-ball, hence is null-homologous (it’s a boundary), so e(TF)
evaluates to 0, which is smaller than x(S?)=2. But since 2-spheres add nothing to the
homology class [S], we can throw them away without affecting [S]=[F]; we can technically
add the statement that no component of S is a sphere to Thurston’s theorem, without
reducing any of it’s scope, and so we do this.

We will do this by building a singular foliation on T and applying the work we have
done above to understand singular foliations on T and how they relate to e(TF|1)[T]. But
in order to apply the isotopy theorem of last time, we actually need an incompressible
surface; we will show how to arrange this part, and leave the rest of the proof, which
calculates e(TF|1)[T], for next time. The idea is that if we don’t have an incompressible
surface T, then there is a disk D in M with DNT=8DCT, as we argued before. Then if we
surger T along D we get a new (possibly disconnected) surface T', with x(T')=x(T)+2. But
[T']=[T] in Hz(M), since together the two surfaces are the boundary of a 3-dimensional
piece of M (see figure). Therefore, if we know x(T')<e(TF)[T'], then we have x(T)<
X(T")< e(TF)[T'|=e(TF)[T], and we would be done (by induction, basically). But we
know that every time we surger T either (we surger along a non-separating curve and)

the genus of T goes down by one or (we surger along a separating curve that does not
bound a disk on either side, so) T splits into two pieces each with smaller genus than
T. So the process cannot continue forever and the eventually end with either a bunch
of spheres (whose sum is null-homologous so [T]=0 so x(T)<=e(TF|1)[T]) or a bunch
of spheres and incompressible surfaces, so T is homologous to a union of incompressible
surfaces. If we verify our basic inequality for each of the incompressible surfaces T;, then
x(T)< Ex(T;)<X(e(TF)[T;]=e(TF)[T], and we would be done.
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Therefore we need only prove the basic inequality for incompressible surfaces T in M:
for this we will be able to apply the isotopy theorem we proved last time, and the counting
techniques we developed this time, to furnish a proof. This will be done next time.
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This time we will finish the proof of Thurston’s theorem.

We have so far reduced the proof to showing that, for any incompressible (orientable)
surface S in M, x(S)<e(TF|s)[S] . We can therefore isotope S, by the Thurston-Roussarie
result, so that the induced singular foliation i*F on S has no center singularities, only
saddles and circle tangencies. Notice that the isotopy does not change either side of the
inequality we wish to prove - we still have the same surface, and the two are homologous
(the track of ther isotopy provides a 3-boundary between them). We will use the singular
foliation to calculate the two quantities, by building vector fields in T(S) and TF|s whose
zeros correspond exactly to the singularities of the foliation on S. Then calculating each
side, using indices and winding numbers around these singularities, respectively, will finish
off the proof.

Suppose first that the singular foliation on S has no circle tangencies. Then it turns out
that we can build a single vector field to suit our purposes - it can be thought of alternately
as living on S (i.e., living in T(S)) and living in TF|s. To build it, note that away from the
saddle singularities (where the leaves of F are tangent to S), the leaves of F are transverse
to S (see figure). Therefore at each point of S (other than the saddles) there is a well
-defined choice of normal vector in S to the leaf of the singular foliation which lies within
90 degrees of the normal to the leaf of the foliation (given by a transverse orientation)
at that point. For otherwise, both normals are orthogonal to the vector orthogonal to
the leaf, so are both tangent to the leaf, implying the leaf is tangent to S at that point,
a contradiction. These vectors form a vector field on S (the choice of normal is locally
constant), except at the saddles, which is orthogonal to the leaves of the singular foliation.
If we now rotate all of these vectors 90 degrees to the right (w.r.t. some orientation of S),
we get a (singular) vector field on S which is tangent to the singular foliation i*(F) .
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Notice that this vector field is tangent to S (by construction), but because it is tangent
to the leaves of the singular foliation, it can also be thought of as a vector field in T(F|s).
This is basically because locally it looks like the picture below. The point is that this one
vector field can therefore be used to calculate both x(S) and e(TF|s)[S]. Before doing so,
though, we need a definition:




Definition: A saddle singularity p of i*(F) is called positive if the normal vector
to S at p (chosen using the orientations of M and S, so that an orientation of S, followed
by the normal, gives an orientation of M) is the same as the normal to the leaf of F at p
(coming from the transverse orientation of F) - see figure. If they are opposite, instead,
the saddle is called negative.

Let Ip = the number of positive saddles of i*(F), and let Iy = the number of negative
saddles.

Now, calculating x(S) using our vector field is easy. It is the sum of the indices of its
zeros, all of which are saddles of the singular foliation i*(F). So all of the indices are —1,
so x(S) is —1 times the number of saddles, which is In+ Ip. So x(S)=—(In + Ip).

For e(TF|s)[S], the calculation is almost as easy. It is the sum of the winding numbers
of our vector field around the singularities, which is calculated in almost the same way,
except that a possible difference in orientations must be taken into account (this does not
arise for x(S), because the orientation for S at a point is the same as the orientation of the
tangent space at that point (more or less by definition)). At a positive saddle (see figure),
the orientations for the surface and the tangent plane agree (since leaves are oriented so
that after adding the transverse orientation, we get the orientation of M), so that the
winding number of the vector field around that point is —1; but at a negative saddle, the
orientation of the tangent plane is opposite (taking an S-centered view), which forces us
to count our winding number in the opposite direction, so the winding number is 1. So
e(TF|s)[S], which is the sum of the winding numbers around the singularities is a sum of
1’s and —1’s, depending on whether the saddle is positve or negative, so we conclude that
e(TF|s)[S] = In — Ip. But since IN>0, it is clear that x(S) = —(In + Ip) = =Iy — Ip <
In — Ip = e(TF|s)[S], as desired!

A /T":'

AN\ -1
This finishes the case that i*(F) has no circle tangencies. If there are circle tangencies,
we will show that we can still build two vector fields, one in T(S), the other in TF]|s,
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which each agree with the one described above outside of small neighborhoods of the
circle tangencies. They also have the further property that their singularities are also
exactly the singularities of i*(F), so the calculations we did above go through without
any change to give the same result - no new singularities means that the index/winding
number calculations are concentrated where the two vector fields agree!

To do this, look at the neighborhood of a circle tangency, and the way that the
procedure above would build the vector field - see below. Our problem is that that recipe
breaks down at the circle tangency < - both normalsin S to the tangent circle are orthogonal
to the normal to the leaf of F containing the circle, so there is no coherent way to choose one
or the other. But none of the nearby loops (we can assume there is no holonomy around
the tangent circle by an argument given before) - have this problem, so the procedure
above does create a vector field tangent to them. This vector field looks like the one in
the figure - they go around v in one direction on one side, and in the opposite direction on
the other. So there is no coherent way to extend it to 7. What we do instead is to alter
the vector field near 4 - but we must do it in two different ways, depending upon which
2-plane bundle we want the vector field to live in.

If we wish to create a vector field in T(S), this is relatively easy. We just alter the
vector field between two loops on either side of 4 as in the figure below. Basically, we
are replacing the singular foliation i*(F) in between the loops to a ‘Reeb annulus’ like the
one below, and taking a vector field tangent to it. This gives us a singular vector field on
S, agreeing with the one produced above (away from the circle tangencies), whose zeros
correspond exactly to the saddles of i*(F).

To build the vector field in TF|s, we need only be slightly more clever. The local
picture is as below, with the vector field as above away from the circle tangency +. This
time we want to extend the vector field over the same little annulus around v, except
this time we want to make sure our vectoare always tangent to the leaves of F, instead
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of tangent to S. With a little thought, it’s not too hard too see how to do this; in the
local picture we just want to keep choosing horizontal vectors which go from pointing left
to pointing b the time we cross the annulus. We can do this just by rotating the
vectors starting at’one side, so that we complete a half-turn as we cross the annulus. Just
choose a consistent direction to turn (like always counterclockwise) as you go across (the
figure below gives a view seen from looking straight down onto the annulus from above).
This gives us a vector field in TF|s which agrees with the one described by rotating the
normal one (away from the circle tangencies) and therefore agrees with the one built in
the previous paragraph, and whose zeros agree exactly with that vector field. So we can
employ the argument given before to give the inequality we seek, completing our proof of
Thurston’s theorem.

"
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We finish with a few comments about this theorem:

(1): This theorem has an exact analogue for foliations of manifolds with boundary.
One assumes that the foliation F is everywhere transverse to the boundary (usually), and
that in addition to having no Reeb components, the foliation has no ‘half-Reeb components’
(obtained by cutting a Reeb solid torus down the middle by an annulus, transverse to the
foliation, containing the core circle). Much of what we have done goes through unchanged
(or with at most minor adjustments) to yield a ‘relative’ version of this theorem: compact
leaves of such Reebless foliations have least genus in their homology class, where this last
part must be interpreted as occuring in Hy(M,0M).

(2): Thurston’s theorem has a converse:

Theorem (Gabai): If a compact orientable surface FCM (properly embedded, if
OF# 0) has smallest genus among all surface representing the same homology class (in
H2(M,0M) or H,(M), whichever is appropriate), then there is a Reebless foliation F for
which F is a leaf.

We will not prove this theorem; but we will explore several of the concepts that go
into its proof, so that we can better understand how such a foliation could be built. We
will start by looking at what is known as the Thurston norm on Hz(M) and H;(M,0M),
which provides a language used heavily in Gabai’s proof. It is defined more or less to be the
least genus of a surface representing the homology class, which is a pretty straightforward
notion, but it turns out to have some rather surprising properties.
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Today we will begin discussing one of the largest elements of Gabai’s proof of the
converse to Thurston’s theorem. This is Thurston’s (semi-)norm on the homology of a
3-manifold. But before we define it and begin exploring some of its properties, we need
to take a crash course in homology and cohomology, from a low-dimensional topologist’s
point of view.

Th e first fact that we will use is that cohomology is (what is known as )a rep-
resentable functor. This means that for any n, and any abelian group G, there is a
space A the n-dimensional cohomology of a space X with coefficients in G, H*(X; G),
is in a (natural) one-to-one correspondence with the set [X,A] of homotopy classes of
maps £:X —A. The space A is known as an Eilenberg-MacLane space A=K(G,n), and
is characterized by the fact that its homotopy groups mx(A)=0 for k#n, and m,(A)=G.
The correspondence, in the direction F:[X,A]—-H"(X;G), is not too hard to write down,
using some standard facts about Eilenberg-Maclane spaces and homology. Given an el-
ement [f]€[X,A], it induces a map f*:H"(A;G)—H"(X;G) (which depends only on [f] -
homotopic maps give the same map on cohomology). But by the universal coefficients the-
orem, H"(A; G)=Hom(H,(A),G) @PExt(Hn—_1(A),G) (whatever that all means). But for
Eilenberg-MacLane spaces, Hy(A)=m,(A)=G, and H,—;(A)={0}, so H*(A; G)=Hom(G,G)
(the Ext term is 0 since (whatever it is) it vanishes for free abelian groups). But Hom(G,G)
has a canonical element, namely the identity map I; the correspondence then is given by
[f]e £*(D).

In particular, for n=1 and G=Z (the case we will be interested in), we have

H!(X; Z)=H'(X)=[X,K(Z,1)].
But a K(Z,1) is easy to find, namely S'; m;(S')=Z, and since its universal cover is (R!
hence) contractible, all higher homotopy groups (agree with those of R! hence) are triv-
ial. In particular, if X=M is an (orientable, compact) n-manifold, then Poincaré duality
says that H'(M) = H,_;(M,8M), and the correspondence [M,S!]—H,_;(M,0M) has a
much more useful description. Given the (class of) maps [f], we can take a representative
f:M—S! and deform it to be transverse to a point x€S'. Then transversality says that
f~1(x)=N is a compact, transversely-orientable (hence orientable) compact (n-1)-manifold
(with boundary, probably), and therefore represents a relative (n-1)-cycle in (M,0M), so
gives an element of Hy_; (M, OM). It takes some work to show that this homology class is
independent of the choices that go into its construction; we will skip this. It is also true
that relative cohomology classes can be represented by maps; for example, H'(M, dM) can
be identified with homotopy classes of maps of pairs [(M,0M),(1,01)], where I1=[0,1]. Using




a similar argument to the above we can therefore represent elements of H, _; (M)=H!(M, M)
by embedded (n-1)-manifolds (which miss the boundary).

But most of this is not really relevant to what we want to accomplish, except that
it tells us (restricting attention now to M = an orientable, compact 3-manifold) that
elements of Hy(M,0M) and Hz(M) can always be represented by a 2-cycle which is in fact
an embedded compact surface.

Now from the point of view of Reebless foliations, the surfaces representing homology
classes that are of the most interest are the least genus ones (provided we ignore 2-spheres).
This leads us very naturally to make the following sequence of definitions.

Definition: If S is a connected, orientable, compact surface then we define x—(S) to
be equal to 0 if S is a disk or sphere, and equal to —x(S), otherwise. For T a (possibly
non-connected) orientable compact surface, we define x—(T)=Xx-(S), where we sum over

all of the components of T.

Basically, it’s the Euler characteristic of T, after we throw out all of the pieces with
positive x, then change sign to make it non-negative. This should remind us of what we did
in Thurston’s theorem - we showed that after ignoring spheres, a leaf of a Reebless foliation
had lower Euler characteristic than any other representative of the same homology class; in
this terminology, it had minimal x—. (What we proved was actually technically stronger;
we also proved that the leaf had minimal total genus - one can have two collections of
surfaces with the same y_ but different total genera.) With this in mind, it then seems
natural to take the next step:

Definition: For any compact, orientable 3-manifold M, we define the (Thurston)
(semi-)norm on Hy(M) to be the function x:Hy(M)—Z defined by

x(a) = min{x-(F) : F is a surface with [F]=a }.
We make the obvious analogous definition for Hy(M, 0M)

Of course, we can’t just call a function a norm; we must actually show that it is. This
is contained in the following proposition:

Proposition: For any «,8€H;(M) (resp., Hy(M, dM)), and any n€Z, we have

(a): x(at+B)<x(a) + x(8)
(b): x(na) = |n|x(c)

Proof: (a): Choose surfaces S and T with [S]=a, [T]|=p, and x-(S)=x(a), x-(T)=x(3)
(this is possible since x— takes positive integer values; the minimum is achieved). We will
show how to construct a surface R with [R]=a + 8, and x-(R) = x~(S) + x-(T); since
x(a + B) < x-(R) (it’s a minimum), this will prove (a).

Isotope S so that it intersects T transversely; then SNT consists of a finite number of
circles (and arcs, if we are dealing with the Ho(M, M) case). If we think of these as lying




in S, then some number of them will bound disks in S (or cut off disks from S) - see the
figure below. But if we choose an innermost such loop (or outermost. such arc) and then
surger T along the disk (whose interior misses T) that this provides (see figure), then we
can create a new surface T'. which is homologous to T (we’ve seen this before), and so is

another representative of the homology class 3.
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x(T') = x(T) + 2 or 1 (depending one whether we surgered along a circle or arc - this

e

is easy to check), so we would expect x— to have gone down. This can’t happen (x—(T)
is minimal, so it must be that we have created new sphere or disk components by this
process. But then it is easy to check that, in all cases (in the case of a loop, we created
one extra sphere, we cut one sphere into two, or we created one extra disk (and therefore
two, since we must have cut open an annulus), or, in the case of an arc, we split off a disk,
or cut one disk into two - basically, when we split off a disk or sphere, ignoring that piece
(except for the annulus case) we get a surface homeomorphic to the one we started with)

X- remains unchanged. Doing this for all trivial loops and arcs of intersection in S, and
then by symmetry all trivial loops and arcs of intersection in T, we can assume we have
minimal x_ surfaces with no trivial loops or arcs of intersection.

Then we preform a cut and paste on all remaining curves of intersection, using the
transverse orientations of the surfaces as a guide (see figure), we get a new surface, denoted
ST, but which we will denote R, because I lied, and TeX does not have a control sequence
to denote this character. Now, [R] = [S] + [T] in H2(M) (resp., H2(M, M)); a h#homology
can be seen between them in the figure below. Also, x(R) = x(S) + x(T), since obtaining
R from SUT basically amounted to removing two copies of each arc or loop of SNT, one
from each surface, and replace it with two more, sewn in differently (think of this on
the level of 1-cells, and count x(R) combinatorially), so the Euler characteristic remains
unchanged. But it is also true that (*) x—(R) = x-(S) + x-(T), since each of these is
basically calculated by first throwing away any spheres or disks and then computing the
Euler characteristic. But any sphere or disk in S or T survives (without any cutting and
pasting) to R, since if, e.g., a sphere or disk of S intersects T, each intersection would be
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a trivial loop or arc of SNT, which don’t exist. On the other hand, every sphere or disk
of R comes from either S or T, because otherwise it was pieced together from parts of
(SUT)\(SNT) (see figure); but one of those pieces must be an outermost disk or innermost
disk, contradicting our preliminary surgery process. So the same collection of spheres and
disks are thrown away on each side of the equality (*), giving an equality of x_’s, and
finishing our proof.

Next time we will handle part (b) of the proposition, and continue to explore some
of the properties of thissmeteic. The next step is to show that these norms extend, in

an essentially unique wa}/ to continuous norms for Hy(M;R) and Ho(M, 0M;R), taking

values in R.
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Last time we introduced the Thurston norm x on second (absolute and relative) ho-
mology of a compact orientable 3-manifold, using the fact that homology classes can be
represented as embedded surfaces, and defined to be, basically, the least genus of such a
surface. This function turns out to be a semi-norm; this is contained in

Proposition: For any a,8€H;(M) (resp., H2(M, 0M)), and any n€Z, we have

(a): x(at+B)<x(a) + x(B)
(b): x(na) = |nfx(a)

The first part was proven last time; today we prove the second, and then show how x
can be extended to a semi-norm on the real second homology groups.

To prove (b), we will show that each side is smaller than the other. Without loss
of generality, we may assume that n>0, This is because if n=0 the statement is obvious
(x(0)=0); and if n<0, then since x(—a)=x(a) (they are represented by exactly the same
surfaces, but with opposite orientations, and x - ignores orientation),

x(na)=x((-n)(-a))=—nx(-a)=|n|x(a)
(provided we have proven it for n>0).

Showing x(na) <nx(a) is not hard; If we pick a surface F with [F]=« and x_(F)=x(a),
then n parallel copies of F (call it nF') represents na. But then x_(nF)=nx_(F)=nx(a),
and since [nF]=na, x(na)< x-(nF)=nx(a).

For the other inequality, choose a surface T with [T]=na, and x—(T)=x(na). We will
show:

Claim: T is the (disjoint) union of n surfaces Sy, ..., Sy each representing a.

This will prove (b), since then
x(na)=x~(T) = x~(S:1U---USp)=Ti, x—(S1) > Ti,x(a)=nx(a)
(because x(a)<x-(S;), since [Si]=a).

To prove the claim, we represent na as a map f from M to S!, with f~!(pt.)=T. We can
do this directly; T is an orientable surface, so a neighborhood of it, N(T), looks like T xI, if
we then map M to S! by sending N(T) to I (by projection) and sending I to a loop running
once around S!, and then sending M\N(T) to the basepoint of this loop, this is a continuous
map, and T is exactly the inverse image of a point (on the far side of S! from the basepoint).
« can alse be represented as a map g:M—S!, and if we then compose g with the standard
n-fold covering map p:S'—S!, we also get a map pog:M—S! representing na. But since
there is a correspondence between (cohomology, hence) homology classes and homotopy
classes of maps from M yo S!, it must therefore be the case that f and pog are homotopic to
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one another. But since p is a covering map, the Covering Homotopy Theorem implies that
there is a map g':M—S! homotopic to g (hence representing the same homology class) such
that pog'=f. But then T=f~1(*)=(p 0 g')~ ()=(g") " (p~1(*))= (&)™*(¥1 U+ -+ Ua)=
()1 (*1) U---U(g") " (*n)= S1U---US,, where each surface S; is the inverse image of a
point under g', so represents a, as desired.

This finishes the proposition, and shows that x is a semi-norm. It is not a norm in
general: it would have to satisfy the additional requirement that x(a)=0 implies a=0.. It
is easy to see exactly when this is true: x is a norm if no non-trivial homology class can
be represented by a union of spheres and tori (and disks and annuli, in the relative case),
since these are the only surfaces with x—=0.

Dealing with this semi-norm on the level of homology with integer coefficients is fine,
but ends up obscuring much of the structure that this semi-norm has. Now, Hy(M) and
H2(M, OM; R) are torsion-free (as is the (n-1)th-dimensional homology of any n-manifold).
So we can think of it as a ‘vector space’ Z™ over Z. Consequently, by the universal coeffi-
cients theorem, the second homology with coefficients in a field is an n-dimensional vector
space over the field, and we can think of it as having the ‘same’ basis as the Z-vector
space. In particular, we can imagine Hy(M) sitting in Ho(M; R) as its integer lattice (and
similarly for relative homology). What we will do now is extend x to a semi-norm on
homology with real coefficients.

Proposition: x extends uniquely to a continuous semi-norm x:Hz(M; R)—>R* (resp.
Hz(M,8M;R)).

Proof: We start by extending x to Q"CR" =H3(M; R) (or H2(M, OM; R), as desired).
We want to extend it in such a way that it remains convex and linear on rays - the point
is that these two criteria force us to extend it in only one way.

Given any a €Q", some multiple of it ka€Z", so x(ka) is defined. If we are to
define x(a) so that we have linearity on rays, then we must have |k|x(a)=x(ka). But we
can then use this equation to define x(a); just set x(a)=|k~!|x(ka). But this definition
involves a choice of k, so we need to make sure that the result is independent of k. This
is not hard; if ka,ma€Z", then kma€Z"™, and by the linearity of x on Z", we have
x(kma)=|k|x(ma)=|m|x(ka), so dividing the last two by [km|, we get |m™!|x(ma)=|k™?|
x(ka), so the definition of x(a) is independent of k.

It is easy to see that the two properties for a semi-norm are true for this extension to
Q" Linearity follows from the equalities x(na)= |k~ |x(kna)=|k~?||n|x(ka)=|n|x(a) (by
choosing a suitable k). Convexity follows by choosing a k so that ka and kg3 are both in
Z"™, and then x(a + 8) = |k} x(k(a + B8))< [k~ x(ka) + [k~ Hx(kB) = x(a + x(B).

Convexity implies that this function xQ™—Q7 is continuous. This is because x(a +
B) < x(a + x(B), the triangle inequality for the norm, implies that |x(a)—x(8)| <x(a—p3)
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(this is standard). Therefore to show that x is continuous, it suffices to show that if « is
small, then x(a) is small. But if we write a=(a;,...an), then x(a)<|a;|x(1,0,...,0) + ---
+ |an|x(0,...,0,1)<(as + --- + ap)C, where C=max{x(1,0,...,0),...,x(0,...,0,1)}. But if «
is small, then each of the a; are, so their sum is, so C times the sum is. So x is continuous.

Now we extend this extesion to R™. Since Q" is dense in R™, given any a€R"™, we
can find a, €Q" converging to «a, so in particular the a, form a Cauchy sequence in Q",
so they are close to one another (i.e., their differences are small). But then the calculation
above then implies that the x(a,) are close to one another, i.e., they form a Cauchy
sequence in R, and hence converge to some number, which we define to be x(a). This
definition is independent of the choice of sequence, because if we choose another sequence
Bn converging to a, then ayp—fyconverges to 0, so by the above, x(ay—/fa) converges to 0,
s0 x(ap )—x(Bn) converges to 0, i.e., the two sequences converge to the same number. This
extension to R™ can be easily seen to satisfy the two criteria for a semi-norm; if we choose
ay converging to a, choose kay, converging to ka, so x(kay)=|k|x(an) converges both to
x(ka) and |k|x(a), so they are equal. For convexity, since x(an+fn)<x(an)+x(Bn), and
the left side converges to x(a+3) while the right side converges to x(a)+x(f8), the first
must be less than or equal to the second.

Finally, this extension to R™ is continuous, by the same argument as given above,
since we have shown that it is convex. Note that this last extension is also forced on us,
if we want to have continuity, since that requires that convergent sequences be carried to

convergent sequences.

It is easy to see that the set of points of norm 0 is a linear subspace of R"; if
x(a)=x(8)=0, then x(aa+bB)<|a|x(a)+|b|x(8)=0+0=0, so since it is positive, x(aa+bS3)=0.
If the function x originally defined on Z", is a norm, however, then it is easy to see that
this extension is a norm (meaning x(a)=0 iff a=0). The converse is also true; but since
nobody seems to care about that, we won’t prove it here.

We can in any case define a unit ball for the norm x; By={a€R" : x(a)<1}. However,

this ball is most interesting when x is a norm. We start with
Proposition: If x is a norm, then By is compact.

Proof: We'’re in R™, so it’s enough to show that By are closed and bounded. Closed
is easy: Byx= x71([0,1]), which is closed since x is continuous. for bounded, we work
projectively: if not, then there is a sequence a;, converging to oo with x(ay)<1 for all
n, and so ay/||on|| lies on the unit sphere in R™ and x(ayn/||an||)< 1/||aa|| converging
to 0. But this gives a contradiction, since the sequence in the sphere has a convergent
subsequence (the sphere is compact), and by continuity of x it must converge to a point a

with x(a)=0, which since x is a norm, is therefore 0, which doesn’t lie in the sphere!
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If By is compact (which if you think about it, implies the x is a norm), then we can use
this to define a norm x* on the dual space Hom(H2(M;R),R)=H?(M;R)= H;(M,0M;R)
(equalities are by the various theorems of homology theory) by

x*(L)=max{|L(a)| : x(a)<1}

This is finite, for any L: this follows easily from the compactness. If L(ay) tends to
oo but a,€Bx then some subsequence converges to some a«; but since L is linear hence
continuous, we must then have L(a)=oo0, which is absurd. Note that the maximum is
achieved, since L is continuous and By is compact.

It is easy to see that x* is a semi-norm; linearity on rays is almost immediate, and
convexity simply follows from the fact that the max of a sum is less than the sum of the
max’s. It is also in fact a norm, since any non-zero ¢ takes a non-zero value at some
point «; some multiple of it has norm less then 1, and so it’s absolute value is positive. It
therefore has, as x, a compact unit ball By..

Our next task will be to show a much more interesting property of these norms:

Theorem: The unit balls By, Bx+ are convex polyhedra, i.e., they are each the
intersection of a finite number of half-spaces.
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Well, that was another awful lecture. Here’s what I should have been saying.

Our goal for the day is to prove:

Proposition: The unit balls By, Bx. are convex polyhedra, i.e., they are each the
intersection of a finite number of half-spaces.

This is actually true for any norm on R™ which takes integer values on the integer
lattice (think for example of the L' norm on R™). So in our proof we will just assume we
have a norm x:R"—R such that x(a)€Z* for all a€Z®.

Lemma: If a,b€Z™, then there is an N such that for all k>0, x((a + Nb) + kb)=x(a
+ Nb) + kx(b).

Proof: Let f(m) = x(a + (m+1)b) — x(a +mb)€Z*. By the convexity of x, f(m)<x(b);
we claim that f is also an increasing function of m. This can be seen quite easily by writing

f(m+1)—f(m) = (x(a + (m+2)b) — x(a + (m+1)b)) — (x(a + (m+1)b) — x(a + mb))
= (x(a+(m+2)b) + x(a + mb)) — 2(x(a + mb))
= (x(a+(m+2)b) + x(a + mb)) — x(2(a + mb))
= (x(a+(m+2)b) + x(a + mb)) — x((a + (m+2)b) + (a + mb)),
which is positive by the convexity of x.

Therefore, since f is increasing, integral, and bounded from above, it must eventually
be constant; there is an N so that f(N+k)=C for all k>0, for some C. It only remains to
see that C=x(b), since by induction x((a + Nb) + kb) — x(a + Nb) = kC (which would
give the result). But by dividing this equation by k we get

*) x(a +ko +b) - x(a,+ko) _c,
but by continuity of x, as k approaches oo ((a+Nb)/k approaches 0, so) the left-hand side
approaches x(b)-0, so C=x(b).

Using this lemma we can see that x is affine linear on the line segment between b and
b+(a+Nb) (see figure); this follows from the above calculation for k=1 For if, for
some 0<t<1,

x(b+t(a+Nb))=x((1—t)b+t(b+(a+Nb)))< (1—t)x(b)+tx(b+(a+Nb))
(it must be less than or equal, by convexity), then
x(b+t(a+Nb))< (1—t)x(b)+tx(b+(a+Nb))
< (1—=t)x(b)+t(x(b)+x((a+Nb)))=x(b)+tx((a+Nb)), s0




x(b+(a+Nb) = x((b+t(a+Nb))+(1—t)(a+Nb))
< x(b+t(a+Nb))+(1—-t)x(a+Nb)
< (x(b)+tx(a+Nb))+(1—t)x(a+Nb)
= x(b)+x(a+Nb)

(by convexity and combining terms), contradicting (*) for k=1.

b bt(arNb) = ot (Wb
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But then because x is linear on rays through the origin, it is easy to see that x is
therefore linear on the cone on this line segment [b,a+(N+1)b] in R™. This is the basic
building block of our construction. What we will do is show that, for any indivisible
element b of Z™ (meaning it can be extended to a Z- basis b=a;,as, . . .,a50f Z") x is linear
on the convex span of some (Z-)basis for R® (meaning it is linear on the cone of the convex
hull of the points in R™ that the basis vectors represent (or, equivalently, the set of linear
combinations with non-negative coefficients)) which contains b (as a vertex). This means
that x agrees with a linear function Ly, on this span; but because x is integral on Z®, and
hence on the basis vectors a;, Ly, is an integral linear function. This will be very relevant
later on.

The idea is to do this by induction (on the number of basis vectors). We’ve just
seen how to do the base case; starting with b and another basis vector a, by adding b
to a enough times (i.e., replacing a with a+(N+1)b, which still gives a basis), x is linear
on their convex span. If we have managed to show that x is linear on the convex span
of b=ay,...,ax, then by taking b'=(1/k)(a;+- - -+ax) (their barycenter), and applying the
argument above to b’ and ax41, we can find a new ax4; (the old one with b’ added to it
enough times, so that the new a4, and the remaining a;’s still give a Z-basis of Zk+1)
so that x is affine linear on the line segment from b'to ay4;. But then a rather nice dirty

trick allows us to see that x is then affine linear on the convex hull of a; ,... ,ak+1 (and
k+1

hence linear on their convex span). For if we pick any point a=3%;7't;a; in the convex hull

(so 0<t;<1 for 1<i<k+1 and their sum is 1), then
x(ak+1) SX(THS tia ) 4x(tir1ak+1) =Zh tix(a;)
(by convexity and linearity of x on the convex span of the first k vectors). On the other

hand, we can also write y=ta+(1-t)3, for some point v on the line segment between
b'and ay41, and some point § in the convex hull of a;,...,a) (this is easy to see if we just




restrict our attention to the plane in R™ containing b’, @, and ax4) - see figure (Oh - and
thank you, Nathan)). Then from convexity it is easy to see that x(v)<tx(a)+(1—t)x(8),
so x(a)>1/t(x(y)—(1—t)x(B). But since v and B are both in places where we know x is
linear, we can write them as a sum of multiples of x(a; ), and so doing this and combining
terms (since the resulting coefficients must be the same as the coefficients of a as a sum
of the a;(i.e., a=(1/t}y—((1-t)/t))B), we get that x(a)> Tk¥1t;x(a;), giving equality, and
hence affine linearity, on the convex hull of a;,...ax4;.

Therefore, by induction, we have shown that every indivisible b can be extended to a
basis of Z™ (and hence of R") so that x agrees with a linear function Ly, on their convex

span C=Cy,. A (= Oy lds & b'rg )Feo\\lj_?
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Notice that we also get that x agrees with —Ly, on the convex span of —ay,..., —an;
both functions change sign. But now since x and Ly, agree on this cone, they are both
equal to 1 at the same points of this cone. For Ly, these points consist of the intersection
of an affine hyperplane P}, with the convex cone Cp. The hyperplane determines a half
space Hy={a€R" : L} <1}.

Lemma: ByCHy, i.e., if x(a)<1, then Ly(a)<1.

Proof: Suppose not; suppose that for some a€R”®, x(a)<1, but Ly(a)>1. Let
B=(1/n)(a1+---an) be the barycenter of our affine simplex, and let y=8/x(8), so x(7)=1.
Then travelling along the line segment from v to a (see figure), x of every point is <1 by
convexity (since this is true at the endpoints), but since Ly (7)=1 (since x and Ly, agree in
the cone over the simplex) and Ly(a)>1 by hypothesis, every point on the line segment
has Ly>1, since Ly, is linear. But this is absurd, since 7 is in the interior of the cone where
x and Ly, agree (but they don’t agree!). ¢
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Note that this also says that if x(—a)=x(a)<1, then Ly(—a)=-Lp(a)<1, i.e., x(a)<1
implies |Lp(a)|<1. Consequently, if we think of L, as an element of the dual space
Hom(H2(M, M; R),R), it has x*(Lp)<1. In fact, since L}, agrees with x on lots of rays
(namely any ray in the convex cone) on which some point of x-norm 1 lives, Ly(a)=1 for
some point with x(a)=1, so x*(Lp)=1. So all of the Ly,’s live in the unit ball By. of the dual
norm, which is compact. But since each of the Ly, are integral linear, and hence correspond
to the integer lattice in the dual vector space (we assume we chose the dual basis for the
vector space), as b ranges over all indivisible elements of R™ Lj, actually ranges over only
finitely-many linear functions Ly, ..., Lpk.

This allows us to easily see that By=Hp; N...NHpx. By is contained in the intersection
by the lemma and induction. To see the other containment, suppose we had a€Hp; N...N
Hpk (so Lpi(a<1 for all i). Choose a sequence (ay)S2, in Q™ converging to a. Each oy
has a multiple (take the least common denomenator of their denomenators!) which is an
indivisible point of its integer lattice, so there is a corresponding linear function in the
finite collection above. Choose a subsequence (which we still denote ()32, ) so that the
corresponding linear functions Lg are all the same. Then x(ay)=Lg(ax) for all n; but since
Lg(an) converges to Lg(a) <1 (by hypothesis), we conclude that (since Lg(ay)=x(an) also
converges to x(a), x(a)=Lg(a), so) x(a)<1, as desired.

For By., we have seen that the linear functions Ly;, i=1,. ..,k are elements of the dual
space of x*-norm 1, so since By« is convex (by the convexity of the dual norm), By« contains
the convex hull of these linear functions. But we claim that in fact the opposite is true; their
convex hull equals By« (this is known as the dual of the polyhedron By). To see this, pick
a vertex v of the polyhedron By and look at the linear functions (call them Ly, ..., Lpk,
for lack of a better name) corresponding to the (affine) hyperplanes that contain the
(top-dimensional) faces that contain v. Because v is a vertex, the intersection of these
hyperplanes is just {v}, which implies that the linear functions Ly, ..., Lpx span the dual
space. These functions all have L;(v)=1 (since it lies in each hyperplane), and therefore any
convex linear combination L=XX_, t;L; (0< t; <1, Bt; = 1) has L(v)=ZX | t;Ly;i(v)=2t; = 1,
while x*(L)< B, t;x(Li)=2ti = 1 (by convexity), so (since x(v)=1) x*(L)=1. In words,
the convex hull of the Ly; form an (n-1)-dimensional (since the Ly; span) face of the
boundary of By« but since any point outside of the convex hull of all of the Ly;’s would
lie over one of these faces (this is because the convex hull contains 0 (being the dual of a
polyhedron), and any face of By« corresponds to a vertex of By (the dual of the dual ...)),
and hence (by linearity on rays) would have x*-norm larger than 1, we have that By« is
contained in the convex hull.

That finishes our proof. Next time we will compute some specific examples for M =
some link complements, and then start to explore how to use this machinery to construct

foliations with norm-minimizing leaves.




