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Introduction

This paper is based on our study of Bill Thurston's notes [Thurston,
1979], which consist of mimeographed notes produced by Princeton Uni-
versity Mathematics Department as a result of the the course given by
Thurston in 1978/79. We shall refer to these notes as [T]. Thurston plans
to expand parts of his notes into a book [Thurston, 1979]. Thereis very lit-
tle overlap between the projected book and this paper. The basis of this
paper was the joint M.Sc. dissertation written by two of us and supervised
by the third. Thanks are due to Thurston who gave us help and encourage-
ment and also to Francis Bonahon for additional help.

A useful reference for background information on hyperbolic
geometry is [Epstein, 1983] or [Beardon, 1983].

Our work should be regarded as exposition of results of Thurston.
There is not much genuinely original material. Nevertheless the effort of
production has been considerable and we hope that readers will find our
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paper helpful. One way to usc this paper would be to read it at the same
time as reading Thurston’s notes. Certainly Thurston's notes cover ground
we do not cover, even in those areas to which we pay particular attention.
There is some overlap between our work and that contained in [Lok, 1981].
Two good expositions of related work of Thurston are ] and [Scott, 1983].

Chapter 1. (G, X)-structures

1.1. (G, X)-structures on a manifold

The material of this section is discussed in Chapter 3 of [T].

Let X be a real analytic manifold and let G be a Lie group acting on
X faithfully and analytically. Let N be a compact manifold, possibly with
boundary, having the same dimension as X.
1.1.1 Definition. A (G, X)-atlas for N is a collection of charts
{br:Un = X}\€n satisfying the following conditions. '
1) The {Ur}form an open covering of N.
2)  Each ¢\ is a homeomorphism onto its image. The image of the boun-
dary, dA(Ur N dN), is locally flat in X",
3)  For each z€Ux N Uy, there is a neighbourhood N(z) of z in Ux N
Uup and an element ¢ € G. such that

dAIN(2) = g>bulN(r).

We call ¢ a transition function.

The last condition gives us a locally constant map
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gp = yIUAnUp. - G.

Notice that gap is determined by 2 € Ux N Uy, X\ and p. To see this, note
that N(z) has a non-empty intersection with the interior of N. This means
that ¢ is equal to $rd ;! on some open subset of X. Since the action of G
is faithful, ¢ is determined. Notice also that it does not work to insist that
gAp should be constant on all of Ux N U n- An example is given by taking
S! = R/Z, with the standard (R, R)-structure, where R acts on R by
addition. If we cover S! by two open intervals U 1 and Uy, then U; N U,y is
the disjoint union of two open intervals, and ¢,, is not a constant element

of R.
- Any (G, X)-atlas determines a unique maximal (G, X)-atlas.

1.1.2 Definition. We define a (G, X)-structure on N to be a maximal (G,
X)-atlas.

We usually think in terms of atlases which are not maximal. The above
definition refers to a CO-structure, though the differentiability class only
really depends on what happens at the boundary. If N is a C"-manifold
(r > 1), we can insist that each ér is a C'-embedding. In that case it is
automatic that the boundary is locally flat. _

Given any open covering of N by coordinate charts {U\}, one may
choose a refinement {V;}, such that the same element g € G can be used as
a transition function throughout the intersection of any two coordinate
charts (see [Godement, 1958, p. 158]). We shall assume from now on that
each gap is a transition function which works throughout Ux N Uy. (As
we have already pointed out, this is not possible if we insist on a maximal
atlas.)

When X is a complete Riemannian manifold. G is the group of
isometries of X, and N is a manifold without boundary, we say that N has
a Riemannian (G, X)-structure. Under these circumstances, N has an
induced Riemannian metric. In this paper, we shall mainly be interested in
the case where X is H" and G is the group of all isometries of X

1.2. Developing Map and Holonomy

The material of this section is discussed in Section 3.5 of [T].

Let M be a manifold with a (G, X)-structure and y:/ = M a path
(here I is the unit interval [0,1]). Holonomy results from the attempt to
define a single chart in a coherent way, over the whole of Y and is a measure
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of the failure of that attempt. We shall give a short sketeh of the construe-
tion. For more details we refer the reader to [Epstein, 1984].
It works like this: cover y with a finite number of charts {Ui}frl

where Ui N U;,; # & and each transition function is constant as opposed
to locally constant. Consider U; N /5. There exists some g1 € G such
that &,|U;y N Uy = gp0d, Uiy N U,. If we replace ¢y with g o by we still
have a chart, which ‘“extends” ¢, to U,. Similarly, associated with Uy N
Us, is some g9 € G. Replacing b3 by g9 © 3 extends ¢,. So, replacing b3
by g1 ° g2 o &3 extends ¢;. Continuing along y we arrive at
g1°92 - - - °g —1°b; which replaces ¢ .

1.2.1 Definition. We now define the holonomy of y. denoted by H(y). to
be gj°og9° - - - og, _ ;. It can be shown that the holonomy depends only upon
the homotopy class of vy, keeping the endpoints fixed, and upon the germs
of the endpoints of y. If we choose some basepoint ry and a germ about
this point, then, by just considering closed loops from z,. the holonomy
gives a map H:w((M,zy) = G which is a homomorphism. Changing the
germ conjugates the image by some ¢ ¢ G. In order that H be a homomor-
phism, rather than an anti-homomorphism, we need to take the correct
definition of multiplication in w,(A,z,). Here ¢199 means traversing first
g1 and then g,.

Now we are in a position to define the developing map. This map can
be thought of as the result of analytically continuing the germ of some
chart at the basepoint along all possible paths in M. Let M be the univer-
sal cover_of M. Fix a germ of a chart at zg, say ¢¢; then the developing
map D:M — X is defined as follows. Take some point [w]in M ie. [w]isa
homotopy class of paths represented by w:/ — M with w(0)=1z¢; let b be a
chart at w(1). Then we define D([w])= H(w)od;(w(1)). D is independent of
¢, because ¢ is used in the definition of H(w). D does depend on the germ
of ¢y, but changing ¢y merely composes D in X with some g€G. |

1.2.2. Theorem: Equivalent definitions of completeness. Let M be a

manifold with a Riemannian (G. X)-structure. Then if Ml has no boundary

the following statements are equivalent:

1) The developing map D : M — X is the universal cover of X.

2) M is metrically complete.

3) Foreachr€R™, and m€M the closed ball B(m.r) of radius r about
m 1s compact.
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4)  There exists a family of non-emply compact subsets {Sthiep* with
Na(S¢)CS; 44 (where Na(Sy)={z € M:d(z,5,)<a}).
For M with boundary. (2),(3) and (4) are all equivalent.
This result is proved in Section 3.6 of [T].

If M is a manifold with boundary, we cannot expect D: M — X to be
a covering map onto its image. Take. for example, the structure on the
closed disk D? determined by an immersion into the plane as (see Figure
1.3.1 ). Since D? is simply-connected the developing map is simply this
immersion and is not a covering of its image.

1.2.3 Figure.
1.3. Convexity

See Section 8.3 of [T].
1.3.1 Definition. Let A be a Riemannian manifold possibly with boun-
dary. Then a geodesic in Al is a path satisfying the geodesic differential
equation. '
For example'let M be the annulus, as shown in Figure 1.3.4 , with a metric
structure induced from its embedding in R2. Then y as drawn is not a geo-
desic, even though it minimizes the arc length between its endpoints.

1.3.2 Definition. M is said to be convez, if, given any two points of M,
each homotopy class of paths between them<contains a geodesic arc. We
say M is strictly convez if the interior of this arc is containec? in the inte-
rior of M. A rectifiable path in M is a path “whose length makes sense’’.
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1.3.3 Figure.
That is, let p:/ — M be a path. For a subdivision 1={0=¢y < t; <... <
tn =1} (where n is an arbitrary integer), define /<(p) by

(o) = "2 d(p(t) (1, -1)).

If {(p) = sgp{h(p)} (over all subdivisions 7) exists (i.e. if this set of real

numbers is bounded), then we say p is rectifiable and that its length is /.

1.3.4 Definition. A map f:M; = M, between Riemannian manifolds is an
1sometric map if it takes rectifiable paths to rectifiable paths of the same
length. A path space is a path connected metric space in which the metric
is determined by path length.

In a path space, there is not necessarily a path between a and 6 whose
length is d(a,b). For example the punctured disk D?\{0} is a path space, in
which there exist such a and 6. The annulus (see Figure 1.3.4 ), with the
subspace metric induced from R2, is not a path space.

It is usual to consider only rectifiable paths parametrized proportion-
ally to arc length. We leave to the reader the simple task of seeing how any
rectifiable path y can be converted, in a canonical way, into a path
parametrized proportionally to arc length, having the same length as Y-

We shall develop two useful criteria for convexity. (see Section 8.3 of
[T]). First we prove a generalization of a theorem which is well-known for
Riemannian manifolds without boundary. See [Gromov, 1981b).
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1.3.5. Theorem: Hopf Rinow. Let (X,d ) be a complete, locally compact

path space. Then ,

1) B(z,L)={y:d(z,y) < L}, the ball of radius L about T, 1s compact
Jorallz € X and any L >0,

2)  Given any two points, there is a distance minimaizing path between
them.

Proof. (1) Suppose there exists r €X and L >0 such that B(z,L) is non-

compact. Then we claim that B(r,L/2) is non-compact for some z, in

B(z,L). To prove this claim we argue by contradiction. So suppose not.

Let M be the least upper bound of those r < L for which B(z,r) is com-

pact. Then M=L/2 and B(z,M—L/16) is compact. We may cover

B(z,M —L/16) by a finite number of balls of radius L/8 with centres Yy
..... yn for some integer n. Enlarge each ball to an L /2-closed ball (each

of which is compact by assumption). Then Uf:;‘B(yi,L/Q) is compact.

Let y be an arbitrary point in B(r M+ L/16). We choose a path
from z to y of length <M+ L/8. Let z be the point which is a distance
M-L/16 along this path from z. Since z€B(z,M~-L/16), we have
z€B(y;,L/8) for some j. Since d(z,y)<L/8, we have y€B(y;,L/2). This
argument shows that B(z,M+ L/16)C Uff{'B(yi, L/2) is compact. Since
M is maximal, this implies that M =L and that B(z,L) is compact. The
resulting contradiction establishes our claim that B(z,L/2) is non-
compact for some z, € B(z,L).

Continue this process inductively to obtain a sequence {zn} such that
B(zn, L/2") is non-compact and zn € B(z, -y, L/2""1). Since this
sequence is Cauchy, zn converges to some v € X. Since X is locally compact,
there exists & >0 such that B(v,3) is compact. Choose N such that
E::;",L /2" <8/2. Then B(z,L/2") would be a non-compact closed subset
of B(v,8), which is a contradiction. This completes the proof that B(z,L)
is compact for each z € X" and each L >0.

To prove 2), note that we may choose a sequence {wi}:I = X such
that wi(0)=z and wi(1)=y, and
1)  wiisrectifiable for all i;

2)  L(wi)convergesto d(z,y)as i tends to infinity;

-

3)  wi is parametrized proportional to arc length for all 7.

Let F={wi} be considered as a subset-of (I, equipped with the
compact-open topology. There exists L such that L(wi)<L forall 1. I is
equicontinuous since [s—t|<d implies that d{wi(s)wi(t))<dL. Since
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B(z,L) is compact, we can apply Ascoli's theorem and deduce that wi con-
verges (after taking a subsequence) to w:/ — X in the compact-open topol-
ogy on C(1,X).

We claim that w is a distance minimizing path. To prove this, first
note that w(0) = z and w(1) = y. For any partition 0 = {(<...<¢ =1,
we have

o~k ] ok
2 d(w(t) ot )= lim ‘S d(w)(t)wi(t)
':

J"xi=0

< ].li_l’nxv L(wj) = d(z,y).

This shows that o is rectifiable and that L(w)<d(z,y). Hence
L(w)=d(z,y). This completes the proof of the claim. U

1.3.6 Definition. A metrically complete Riemannian manifold with boun-
dary is locally convez if every point has a convex neighbourhood.

Remark: Whitehead's theorem (see [Kobayashi-Nomizu, 1963]), tells us
that any point in the interior of A has a convex neighbourhood, so local
convexity is really only a boundary condition. Furthermore, even for
points z on the boundary, if y is near z and there is a geodesic from z to y.

then this is a distance minimizing path.

1.3.7. Corollary: Local convexity implies convexity. If M is a com-
plete, locally convez, Riemannian manifold with boundary, then M is con-
ver. In particular, any complete Ricmannian manifold without boundary ts
convezx.

Proof. We may assume that M is simply connected, since we may always
work in the universal cover. ,

By Theorem (Hopf Rinow), there is a distance minimizing path
between any two points in M, which we may parametrize proportional to
arc length; denote this path by w:/ — M. \We claim that w is a geodesic. If
not, there exists ¢€[0,1] such that w[t -7, ¢ -] is not a geodesic for any
M >0. Choose 1 such that w[t —m.1 - v] is contained in a convex neighbour-
hood of w(t). Now replace w|/ —n,/ - n| by the geodesic from w(t—7) to
w(+m) to obtain w:/ = M with L(w)<L(w)=d(r.y), which is a contrad-

iction.
D
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Remarks: One may similarly prove that local strict convexity (i.e. every
point on the boundary has a strictly convex neighbourhood), implies strict

convexity.

1.4. The Developing Map and Convexity

(See Section 8.3 of [T].)

In this section we shall require M to be a (G, X)-manifold possibly
with boundary, where G acts on X', a simply connected Riemannian mani-
fold, as a group of isometries. We shall assume that if w:M — M is a cover-
ing map, then m is a local isometry and the covering translations are
isometries. The following lemma is an immediate consequence of the cover-

ing homotopy property.

1.4.1. Lemma: Universal cover convex. M 1s convex if and only if M 1s.

The next result is a natural generalization of Theorem 1.2.2
(Equivalent definitions of completeness) and Proposition 8.3.2 in [T]

1.4.2. Proposition: Coverings and convexity. Suppose M is a (G, X)-
manifold possibly with boundary, where X 1s a simply connected Rieman-
nian manifold of non-positive curvature and G 1s the group of tsometries
of X. Then M 1s convex and metrically complete if and only if the develop-
ingmap D : M — X is a homeomorphism onto a_conver complete submani-
fold of X. In this case D 1s an isometry onto DM .

Proof. Suppose M is convex and metrically complete. We have seen that
M is convex and it is clear that M is metrically complete. Since the curva-
ture is nop-positive, no geodesic in X intersects itself. Since D takes geq-
desics in M to geodesics in X, D _js injective on any geodesic of M. But A/
is convex, so any two points of M can be joined by a geodesic. Hence D is
injective. Thus D is an isometric homeomorphism onto its image in X.

Since M is convex, so is DM.

To prove the converse, suppose D is a homeomorphism of M onto a
convex complete submanifold of X. By Lemma 1.1.1 {{niversal cover con-
vez), M is convex. To show M is metrically complete, let {zi} be a Cauchy
sequence in M. Taking a subsequence, we may assume that d(r,
Z;41) <2771 Let w:[0,1] = M be a path such that w(2™') = zi. Let
w:(0,1] = M be a lift of w. Since M is complete, w(t) converges to a limit
as t tends to zero. Hence w(t) has a limit as ¢ tends to zero. This
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completes the proof of the proposition. D

Remark: One may similarly prove the analogous result for strictly convex
manifolds with boundary.

1.5. The Deformation Space

See Chapter 5 of [T].
1.5.1 Definition. We wish to consider the space of all possible (G, X)-
structures on a fixed manifold NV possibly with boundary. This is called the
deformation space of N and is denoted (}(.V).

Suppose we have a fixed My€Q(N), and a fixed covering by charts
{bi}:Ui = X (locally finite with one element of G acting as transition func-
tion for the whole of the intersection of any two of them) and a shrinking
{Ui’}. A sub-basis for the topology of €)(.\) is given by sets of the following
form:

Nj(Mg) = {MEQ(N)IM is defined by {lii}:Ui* = X and ¢ € Vy}

where Vj is an open neighbourhood of ¢; in the compact-open topology on
C(Uj’', X). If N is a C"-manifold, we can restrict to C'-charts and take
Vi to be a neighbourhood of ¢ in the compact C-topology. We have
chosen a shrinking {Ui’} so that we may use {U:'} as coordinate charts for
all “nearby” structures, i.e. we may. deform ¢i a small amount in any
direction without causing any self-intersections (see Figure 1.5.2 ). Q(N\)is

infinite-dimensional if it is non-empty.

1.5.2 Figure.

Suppose {Mi} converges to M in {)(N). Then it is clear that we may
choose associated developing maps {Di} and D such that D: converges to D
in the compact-C" topology on C(N,X) (0 < r < =). Intuitively, any
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compact set in N is covered by a finite number of lifts of coordinate charts,
and one may control the behaviour on each coordinate chart.

1.5.3. Theorem: Limit is an embedding. Suppose M converges to M in
Q(N). Let Di and D be the associated developing maps such that Di con-
verges to D,_and suppose that D|K s an embedding, for some compact
subset K of N. Then Di|K is also an embedding for sufficiently large i.

Proof. We need only prove this in the C%case. Suppose that the result is
false. Then there exists {zi}, {yi}C K such that Di(zi) = Di(yi) and zi * y:.
Since K is compact we may assume that zi converges to some r, and yi
converges to some_y, both in K. Since D: converges to D, D(z)=D(y) and
so r=y. Let w: N — N be the universal cover of N. It follows that, for
sufficiently large 7, w(zi), w(yi), w(z), and w(y), all liein Uj’ for some fixed
7. We mgy assume that U’ is contractible in N, so that there exists
a:lU;" = N, a well-defined (G, X)-homcomorphism onto its image with
moa: U5 = N equal to the inclusion map and a(w(zi))=zi, and
a(w(yi))=yi for large i. Since Wi and Dia are (G, X)-embeddings of Uj in
. X, Dica|Uj'=gobiluj’ for some ¢ €G. Then since goyi is a homeomor-
phism onto its image and wzi #* wy:, we have Dixi # Diyi, which is a con-
tradiction. D

1.5.4 Space of developing maps. It is often easier to regard Y N) as a

function space. We can characterize a developing map D:N — X as a local

C’-diffeomorphism (homeomorphism if r = 0) such that for covering

translation y of N, there is an element H(y) of G with Dey=H(y)eD. We

topologize the set of developing maps by means of a subbasis consisting of
sets of the following form

1) U where U is open in the compact-C’ topology on C(N,X),

2) N(K)={D | DIK is an embedding} where K is a compact subset of
N.

Then G acts continuously on the set of developing maps by composition on

the left. We can identify (V) with the quotient of the space of developing

maps by G.

1.5.5 Remarks.

1) If we restrict our attention to (' manifolds for some fixed r
(1< r <o), this topology on the space of developing maps is simply
the compact-C” topology (i.e. sub-basis sets of the second type are
unnecessary.) It is a standard lct in differential topology that the
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space of C" embeddings is open in the space of all " maps.
2)  Our topology is strictly finer than the compact-open topology — see
for example Figure 1.5.6 .

\J

1.5.8 Figure. The picture shows the images of various developing maps which are
immersions not embeddings. This sequence converges in the compact-open topology,

but not in ours.

3)  We shall use the notation dys(z.y) to denote the distance between z
and y in N as measured in the path metric induced by M. If Mi con-
verges to M, dy, does not necessarily converge to dys. In fact, dy
may be infinite on a compact hyperbolic manifold with a boundary
which is not smooth. In other words, it is possible to have two points
on the boundary of M, with no rectifiable path joining them — see
Figure 1.5.7 . To be sure that dy,, converges to djs, one needs to be

working with the compact-C” topology (r > 1)

1.5.7 Figure. d,, does not converge to dy, in this example. as we may choose the
spiral to be arbitrarily long. and distances are measured by paths. In fact dp 15 infinite

for some pairs of points.

4) If we consider a closed surface of negutive Euler characteristic,
Teichmiiller space (see Section 3.1 (The Geometric Topology)) is a
quotient of ((N). More precisely, T(N)=Q(N)/H, where H is the
group of isotopies of N to the identity. An_isotopy h acts on a
developing map D by lifting A to_an isotopy h, which starts at the
identity, of N=H?2 and taking D<h,. For a gencral (G, X)-structure,
it is also quite usual in the literature to define the space of structures
as ()( N) modulo isotopy.
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1.8. Thickenings

The subject we are about to discuss is capable of considerable gen-
eralization. A very general treatment is given in [Haefliger, 1958]. Our dis-
cussion applies to a number of other situations (almost) verbatim. For
example one can obtain a proof of the Whitney-Bruhat Theorem
[Whitney-Bruhat, 1959], which states that every real analytic manifold can
be thickened to a complex analytic manifold.

Let N be a manifold of dimension n, possibly with boundary. Let M
be a fixed (G, X)-structure on N.

1.6.1 Definition. A thickening of M is a (G. \')-structure on a manifold
without boundary Nt. of dimension n. containing N as a submanifold,
which induces the given (¢, X')-structurc on V.

1.6.2 Definition. If M, and A, are Riemannian (G, X')-manifolds and M,
is (G, X')-embedded in M,, we say M, is an e-thickening of M| if, for each
point z € M/, there is an e-neighbourhood in M, which is isometric to an e-
ball in X.

1.6.3. Theorem: Thickenings exist. M has a thickening, and the germ
of the thickening i1s unique in the following sense. Let MCM; and

MCM; be two thickenings. Then we can find U; and U; with

M C U C M;, such that each U; is a thickening of M and there is a (G,
X)-isomorphism between U; and U; which extends the identity on M.

Moreover this isomorphism s uniquely determined if each component of
U; meets M.

Proof. Thickenings exist:

First we prove uniqueness.

... 1.6.4. Lemma: Thickening unique. Given two thickenings M; and
A/I; of M, there exist isomorphic open neighbourhoods U; of M in M; and
U; of M in'M;. Moreover the isomorphism 1s unique.

Proof. Thickening unique: For each point €M, we have a neighbour-
hood U, which is open in M;, and a (G, X)-embedding f:U — M,;, which
is the identity on (/MM. We may suppose that we have a family
{/i:Ui = M, } of such embeddings, such that the {{i} form a locally finite

family and cover M. Let {Vi} be a shrinking of {U:}.
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Lot W be the set of w € U Vi such that if w ¢ ViN Vj then fi = fjin
some neighbourhood of w. From local finiteness, it is easy to deduce that
W is open. Analytic continuation shows that M C W. We get a well-
defined (G, X)-immersion of W in M;. By restricting to a smaller neigh-
bourhood of M we obtain an embedding, as required.

The uniqueness of the embedding follows by analytic continuation.
Thickening uniquej

Continuation, proof of Thickenings exist: We now prove the existence
of thickenings. The clearest form of the proof is given in Figure 1.6.5 .

—A‘\\\\\ wiAl

2%

1.6.5 Figure. -

Let {¢i:li = \'} be a finite atlas of coordinate charts for N. First
note that (/i itself may be thickened. To see this. note that we can identify
a single Ui with a subspace of X. Ui is open in X if and only if
ali(=UiNnaN)=. By adding small open neighbourhoods in X of each
point in 8 Ui, we obtain an open subset 1% of X such that U; is closed in V.

We now find thickenings of U;U...UU: by induction on . What we
have to show is that if a (G, X)-manifold M (with boundary) is the union of
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two open submanifolds U, and Us, and if U/} has a thickening U,; and Uy
has a thickening Uy, then M also has a thickening. To see this, we write
X; = M\U; and X = M\U,. Then X; and X, are disjoint closed subsets
of M. Let X;CV; and Xy3C Vy, where 1’} and 1, are open in M,
VinVy=, V,CU, and Vo C Uy. Let P; C U} be an open neighbour-
hood of Xi, such that PiN(M\Vi) = &. M\(V,UV,) = P is closed sub-
space and PNP; = J for 1 = 1,2. Note that P C U'yN{y. Let U’ be a
thickening of U;NU,. By the Lemma 1.6.4 (Thickening unique), we may
assume that U*C U_I and U'c U;. Let P* be an open neighbourhood of

P in U" such that P*NP; = 3 for 7 = 1.2. Vl\P*UP; and VQ\P*UP;
are disjoint closed subsets of M, each contained in U/;N{s. Let W: and
W; be disjoint open neighbourhoods of these sets in U". We may assume

that P; N w; = . since
P} NV C PNV =0,

and similarly we may assume that I:’_; N, =0.

Now we take the open subspace PTUW UP'U W, of U and the
open subspace P; U W; UP'U W]* of l"._: and glue them together by identi-
fying W; UP*U W; in these two sets. We have

P! N(WIUP'UW;)= PNW;

and
P;N(W]UPTUW,) = P;NW;
and these two sets are disjoint. It follows that the identification space is
Hausdorff. (Note that P; and P, are disjoint open subsets.) Gluing mani-
folds together along an open subset automatically gives a manifold, usually
a non-Hausdorff manifold.
This completes the proof of the theorem.

Thickenings exist

1.6.6 Remark. The same proof works for a non-compact manifold. Any
(G, X)-manifold of dimension n with a countable basis can be covered with
a finite number of charts. (These charts are not, of course, connected.) In

fact (n + 1) charts will do.
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1.7. Varying the Structure

Let N be a compact ¢ -manifold (()\g r < ») with boundary. Let Ny,
be the union of N with a collar 4.V x [, where 4N C .V is identified with
INXOCaNxI. We fix a (G, X)-structure Mg, on Nqp,. By fixing a
basepoint in NV, the ugiversal cover of A, we can identify the group of cov-
ering translations of N with 7 (N)=w(N1}). The same group of covering
translations acts on the universal cover of Nqy.

A developing map D:N — X induces a homomorphism from =N,
the group of covering translations. to (. Let 3(.\) be the space of develop-
ing maps with the topology described in 1.5.4 (Space of developing maps).
Topologize Hom(+; N, G') with the compact-open topology.

The holonomy gives us a map
H:3(N) = Hom(w;N.G)
which is easily seen to be continuous. The induced map

Q(N) = R(m,N,C)

of the space of (G, X)-structures on N into the space of conjugacy classes
of homomorphisms of w N into G, is also continuous. In general
R(wyN,G) is not Hausdorfl. Let M be a (G, X)-structure on N and let
My, be an extension of M to Ny. (From Theorem 1.6.3 (Thickenings
erist) and the Collaring Theorem [Connelly, 1971] we can see that such an
extension exists.)

The next theorem may be viewed as one of the ways to make the dis-
cussion in Section 5.1 of [T| more formal.

1.7.1. Theorem: Neighbourhood is a product. Let Dpy: N, = X be a
fized developing map for My,. Then a small neighbourhood of DryIN in
the space of developing maps of N is homeomorphic to AXE, where A 15 a
small neighbourhood of the obvious embedding N C Ny, in the space of
locally flat embeddings., and & is small neighbourhood of the holonomy
hpp:m N = G in the space of all homomerphisms of w N tnto G. The pro-
Jection of the neighbourhood of Dy I\ to 8 is given by the holonomy
H:D(N) — Hom(w,N,G) defined above.

The action of G on the space of developing maps corresponds to con-

Jugation in 8.
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Proof. Neighbourhood is a product: Let Nt be the union of Ny, with
a collar (i.e. a thickening of a thickening) and let My be a (G, X)-
thickening of My, with underlying manifold Nppr. We now show how to
map a small neighbourhood & of hy,:w N — G, the holonomy of M, con-

tinuously into the space of structures of Ny,.

. 1.7.2. Lemma: Holonomy induces structure. There is a continuous
map
D:B = D(N7) .

Proof. Holonomy induces structure: Let {{i}g<,<4 be a finite open
covering of Nt such that Uy=Npp\Nqy, and such that Ui C intNpr for
1<i<k. Let Ul=Ui (1<i<k). For each r >0 let {Uf*1}o ;4 bea
shrinking of {U:}OQ'gk- We may assume that (7 is simply connected for
t > 0.

Let Dpy:NtT — X be a developing map for Myt and let m:Ng — Ny
be the universal cover.

Choose an h near hy,. We show how to construct a (G, X)-structure
on Npy. The method is to construct a developing map N, = X. We
define Dlw—1U,; = Dyyln~1U, and, inductively, an equivariant local
homeomorphism Dy :w‘lU:U...Uw“U: — X which is equal to D;_; on
w‘lU;U...Uw‘lUj_l.

N
’ -

. 2 W v$+l
b ateet . \\K S
‘:‘Qr;:wﬁ “// ...

%

1.7.3 Figure.
To carry out the induction step we nced.to detine D, . yonw U2 1.

We need to do this on only one component, because we can extend by A-
equivariance. Let w map Vs C N homeomorphically onto U:H and let
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V,4+1C Vs correspond to U2!!. Let W be an open neighbourhood of

V,+1in N whose closure is contained in V5. We define f:V5 — X as fol-
lows. On Vo\W, f isequal to Dp. On V, , \N(m-1U"tU...Un- 102" )
J is equal to Ds. On the remainder of Vi, f is given using standard
theorems about C"-manifolds. If r =0 we use a result of [Edwards-Kirby,
1971, in the form explained in [Siebenmann, 1972]. If r >0 one can use
standard bump function techniques and the openness of the space of
embeddings in the space of all maps. We define 1), _{IV7,,, to be equal to
f1V, .. Note that whether r=0 or r >0, the extension / depends con-
tinuously in the C'-topology. on Ds and on h. Hence D, . depends con-
tinuously on Ds and upon h. It follows that the developing map depends
continuously on A. When s =k, the induction is done and we have defined
a (G, X)-structure on Ny, which depends continuously on k.

'Holonomy induces structure

Continuation, proof of Neighbourhood is a product: Given an ele-
ment (::N — Nqp,h) of 4XE8, we define an element of B as follows. We
obtain a developing map D(h):Nt, = X from Lemma 1.7.2 (Holonomy
induces structure). By lifting ¢ to the universal cover, choosing a lift :
which is near the identity, we obtain a composite developing map

1\/ _’ }VTh (h)

This composition is near DMIN.

Conversely, given a developing map D : N — X. near to DN, we
have the holonomy h = k(D) which is near to hys, and hence the develop-
ing map D(h): N, = X of 1.7.2 (Holonomy induces structure). To com-
plete the proof of Theorem 1.7.1 (Neighbourhood s a product) we need to
construct an embedding :::N — Ng,. near the identity, such that
D(h)ei=D. This will follow once we have proved the next lemma. (The
proof that the maps between 4x& and the neighbourhood of Dy|N are

inverse to each other is left to the reader.)

..-1.7.4, Lemma: Embedding exists. T/ere 15 a unique equivariant map
1:N = Ny such that D(h)er=D.

Proof. Embedding exists: To carry out the construction we take a cov-
ering { Ui} of Ny, by simply connected coordinate charts, and a shrinking
{Ui}, also consisting of simply connected open sets. We assume that
UiU...UUr isconnected for 1 < r < k.
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Let Vi be alifting to Ny, of Ui and let Vi C Vi be the corresponding
lift of Ui. We choose the lifts so that ViU...UV?} is conneccted for
1<r<k. The map D(h)| Vi is a homeomorphism onto its image. We may
assume D(ViNN) C D(h)(V) since D and D(h) are both near Dy,. The
equation D(h)oi=D then determines 1 uniquely on ViNN. We shall show
that ¢ is well-defined on N and equivariant at the same time. Let
1;: ViNN — X satisfy D(h)iy = D on ViNN and let i5: V5NN = X
satisfy D(h)io = D on V5NN. Let y be a covering translation of N.
Then, on ViNy~1V we have

D(k)iy =D = h(y~Y)Dy
= h(y~1)D(h)isy
= D(h)y "tiay
Therefore 1} = y~ligy: Viny -1 \"]'ﬂ;\.' = LinNy 1.

Taking y = id we see that 1 = i, = i, is well-defined on VjU...UV}. It
also_follows that we have a well-defined and unique equivariant extension

to N.

Embedding exists

This completes the proof of the theorem
Neighbourhood is a product

1.7.5. Corollary: Epsilon thickenings exist. If N is a manifold with a
Riemannian (G, X)-structure then there 1s a neighbourhood of M in Q(N)
in which e-thickenings exist for some value of € > 0. (See Definition 1.6.2
(Epsilon thickening) for the definition of an e-thickening.)

1.7.6 Weil’s Theorem. In the particular case where N has no boundary,
Theorem 1.7.1 (Neighbourhood is a product)implies the famous theorem of
[Weil, 1960], that, up to isotopy. deformations in holonomy corresponding
to deformations of the (G, X)-structurc. Our theorem gives a very precise
version of that result and is also a gereralization to manifolds with boun-

dary.
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Chapter 2. Hyperbolic structures

2.1. Mobius Groups

The material in this section is covered in-Chapter 8 of [T].

Suppose that M is a complete hyperbolic manifold without boundary,
i.e M has an (H". [som(H"))-structure. Then the developing map is a
homeomorphism of Af with H" and we will consider M to be equal to H".
The covering transformations (which form a group isomorphic to sv{M) are
a discrete subgroup " of Isom(H ") and M\ =H"/I".
2.1.1 Definition. We define a Mobius group to be a discrete subgroup of
Isom(H"). When the group consists of orientation preserving isometries
and n =3, it is called a Rlemnian group and when n=2 a Fuchsian group.
If I" is torsion-free, H "/l  is a complete hyperbolic manifold. From now on,
I will denote a Mobius group, which will be assumed to be torsion free
unless stated otherwise. LT will denote the limit set of I’ (i.e. I'(z)—1'(z)
where z€H" and the closure is taken in the disk H*US2™!), and

Dr = S2I\Lr the ordinary set. (We note that |’ acts properly discon-
tinuously on H*UDr.)
2.1.2 Definition. The conver hull C(LT) of a Mobius group I’ is defined to

be the convex hull of its limit set, i.e. the intersection of all closed hyper-
bolic half-spaces of H"US2 ™! containing LT. We define three manifolds

associated with 1
Cr=(C(LT\LT)/l the conver core

Mr=H"/l the Klcinian manifold

Or=H"UDr/l" the Kleinian manifold with boundary.

The convex core carries all the essential information about I'. Or is
often a compact manifold, even when AT is non-compact.

Further information on and references for Mobius groups can be
found in [Beardon, 1983 | and [Harvey, 1977 |.
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2.2. The Thick-Thin decomposition

See Section 5.10 of [T).
2.2.1 Definition. Let M be a complete hyperbolic n-manifold. We define
inj(z), the injectivity radius at r, by

inj(z) = infy{ length(vy)i/2

where y varies over homotopically non-trivial loops through . Given € >0
let M »)={z € Mlinj(z) > €} (this is often called the thick part of the mani-
fold), and let M(O?Q]={1:6M|inj(a:) < €} (known as the thin part). Note
that given z EM(G'.,O), the e-neighbourhood of z is isometric to an e-ball in
H".

We shall need to know the structure of the thin part of a hyperbolic
n-manifold. The following result is due to Margulis [Kazdan-Margulis,
1968 ] although the following formulation is due to Thurston [Thurston,

1984 ]

2.2.2. Theorem: Thick-thin decomposition. Therec is a universal con-
stant e, (called the Margulis constant), depending only on the dimension n,
such that, given any complete hyperbolic n-manifold M, the thin part
M(O,e] consists of a disjoint union of pieces of the following diffeomorphism

types:
1)  N"~1x[0,%) where N"~! is an Euclidean manifold. (These non-
compact components ofM(O’Q] are neighbourhoods of cusps of M. )

2) A neighbourhood of a closed geodesic.

2.2.3 Remarks:.

1)  Neighbourhoods of cusps of M have finite volume if and only if N7 !
is compact. Thus M has finite volume if and only if M[e’n) is compact.
The neighbourhood of a geodesic can be non-orientable. (For exam-
ple a Mobius band in two dimensions.)

When n=2 or when n=3 and A/ is orientable, we know, even more
specifically, that the non-compact components of AI(O,&] are of the form:

Hlll -p C ‘\/I(U,elg H2/|.p

where /1| and H, are horoballs centred at p (a parabolic fixed point of I')
and I'p is the stabiliser of p in 1. We also have the following corollary

L)
—
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which will be used implicitly throughout the section on geodesic lamina-

tions.

2.2.4. Corollary: Simple geodesics go up a cusp. If M 13 a hyperbolic
surface or 8-manifold, there exists an € such that if a simple geodesic
enters a non-compact component of Mo, 1t must continue straight up the

cusp (i.e. it must have a lift with endpoint p .)

2.2.5 Remarks:.
1) In the orientable case. each non-compact component of Mg is of
the form H,;/l'p, where H, is a horoball centred on p.

A uniform horoball is a horoball whose images under the group | are
disjoint or equal. If n <3, then each cusp gives rise to a uniform
horoball. There arc examples in higher dimensions ([Apanasov,
1985]) where no uniform horoball exists, but the matter is still not.
entirely cleared up because all known counter- examples require an
infinite number of generators for 1.

The sort of decomposition we get in the case of a surface is illustrated
in Figure2 2.§ Thick-thin decomposition for surfaces).

1o
~—

2.2.6 Figure.
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2.3. The Nearest Point Retraction

See Section 8.4 of [T].

This section discusses properties of the nearest point retraction from
hyperbolic space (with the sphere at infinity included) onto a convex sub-
set. In general we will be considering it as a retraction of hyperbolic space
onto the convex hull of the limit set of a Kleinian group. In this form it will
induce a retraction from the Kleinian manifold with boundary onto the
convex core. See also [Epstein-Marden].

Given a closed convex subset C of H"US2 "}, there is a canonical
retraction r:H"US2™ 1 - C. If 2€C then r(r)=x, and if reH "XC then,
since C is closed, there is a ball B, of radius h about r and disjoint from C.
for some h. We increase the radius of this ball continuously until it first
touches C. This point of first contact we define to be r(r). If r€SL™ lc,
we do the same construction but with horoballs centred at r. Again we
define the point of first contact to be r(.r).

2.3.1. Proposition: r continuous. r is well-defined and continuous.

For the proof of this result see [Epstein-Marden!.

Now let 1" be a Mdbius group and let Or and CT be the Kleinian
manifold with boundary and the convex core respectively (see Section 2.1
(Moebius groups)). Then we can use r to define a map r:OrT — CT as fol-
lows. Given z€OT we define r(w(z))=nr(z) where z€H"UDr. (Here
m:H"UDr — Or.) Clearly r is well-defined.

2.3.2. Proposition: r bar proper. T Is proper.

Proof. Note that r:H"US™ ! > ¢(Lr1) is proper. Therefore the
induced map H"UDr = C(LT)\L1 is proper. Let A be a compact subset
of Cr. For each r (A, we choose r (H "pl)l‘ such that wr=r and we
choose a compact neighbourhood N(r) of 1 in C(LT). Let ry, ..., x; be
chosen so that w>N(r;) ,..., mN(z) cover K. Since r is proper,
Li=rIN(z:) is compact. Clearly r 1A is contained in wL U...UnLg
and is therefore compact. So r is proper. D
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2.4. Neighbourhoods of Convex Hyperbolic Manifolds

See Section 8.3 of [T].

2.4.1. Theorem: Embedding convex manifolds. Any conver complete
hyperbolic manifold M with boundary can be embedded in a unique com- -
plete hyperbolic manifold with the same fundamental group as M.

Proof. Since M is convex and complete, we can apply Theorem 1.4.2
(Coverings and convezity) and think of M as a closed convex subset C of
H" together with a group I'Clsom H " which acts properly discontinuously
on C. Since r is proper, I’ also acts properly discontinuously on
r-1C=H"UDr. Therefore it acts properly discontinuously on H".

The only thing that might stop H"/l' being a manifold is that I’
could have torsion. For example, take the annulus in H? as shown in Fig-
ure 2.4.2 . Then the quoticnt by a rotation of 7 about the centre gives a
manifold. But H%/1 is a cone.

2.4.2 Figure.

We shall prove by contradiction that |’ is torsion free. Suppose I’
has an element ¢ with order n. Take any point r € C and consider
the set {z,g9(z) ,..., ¢" 1(2)|CC. The convex hull €, of these
points is contained in C and also €, is invariant under g. But then
existence of a fixed point p (€;C( for ¢ contradicts the fact that
C/l' is a manifold. This contradiction shows that H"/l' is a
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manifold.
J

2.4.3 Definition. Given a convex, metrically complete hyperbolic mani-
fold M, with boundary, embedded in a metrically complete hyperbolic
manifold, and an € >0, we define Me to be the e-neighbourhood of Af. €
does not need to be small. Unless otherwise stated we shall always assume
that M is embedded in the manifold given by Theorem 2.4.1 (Embedding

convez manifolds).

2.4.4. Proposition: Epsilon neighbourhood smooth. Let C be a
closed, convez subset of H". Then the distance function SH"\C - R

given by A(z)=d(x,C) is CL.

For an elegant proof of this, due to Brian Bowditch, see [Epstein-
Marden].

We shall assume the following well-known result which is actually a
consequence of negative curvature. (See [Douady, 1979)].)

2.4.5. Lemma: Strict convexity. If w; and w, are two geodesic arcs in
H" parametrized proportional to arc length, then f(z,y)=d(w(z),ws(y))
is a convez function defined on R XR . Furthermore, f is strictly convez
unless w; and wq are contained within the same geodesic.

The next result is a vital step in the proof of Theorem 2.5.1 (Nearby
structures have convex thickenings).

2.4.6. Theorem: Geodesics dip. Let M be a conver hyperbolic manifold
and let w be a geodesic, paramelrized by arc length, of length L >2v in Me.
There is a continuous function d(e, ) >0 such that d{w(t),M)<e—d for
all t€[m,L — ). & is given by

: sinhe
d(e,m) = € — arcsinh [?‘3§h—ﬁ :

Note that d(e, n) < n and that 8(€, M) is a monotonic increasing function
of 7.
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2.4.8 Figure.

Before we prove this, we prove two lemmas.

2.4.7. Lemma: Estimate for distance. Let A be a geodesic mH?>. Letw
be a geodesic, and set u = d(w(0).\). Let the angle between w’(0) and the
perpendicular to \ through w(0), oriented away from N. be 8. Then

sinhd(w(t),\) = sinhu cosht ~ sinht coshu cosH.

w

wo

2.4.9 Figure.
Proof. Left to reader. U

2.4.10. Lemma: Distance function convex. If C 1s a closed convez sub-
setof H", then d(w(t),C) is conver.
Proof. Suppose, for a contradiction, that

d(w(a),C) > ad(w(0),C") + (1—-a)d(w(1).C')

for some 0 < a < 1. Let y:I — C be the geodesic with y(0) = rw(0) and
¥(1) = rw(1). We have ‘
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d(w(0),C) = d(w(0),¥(0)) and d(w(1),C) = d(w(1),¥(1))

Then
d(w(a),y(a)) 2 d(o(a),C) > ad(w(0),y(0)) + (1-a)d(w(1),y(1))

which is a contradiction. D

We can know proceed with the proof of the theorem.

Proof. Geodesics dip: It is suflicient to prove the result for MCH",
since we can lift to the universal cover. In fact we shall prove it for
M = C, an arbitrary closed convex subset. By Lemma 2.4.9 (Distance
function convez), d(w(t),C)< e for 0 < t=L. We must show that for

M < tl < L -N

d(w(y),C) < €~ d(em).
Defining w,(t) = w(t+1¢;), we see that what we have to show is that if
d(wy(t),C)< efor —m < t < mthen

d(w(0),C) < €—d(e.m).
By the definition of 3(e, 1) this is equivalent to showing that
coshm.sinhd{w(0),C) < sinhe.

This is obvious if d(w(0),C)=0. So we may assume that
d{w(0),r ®;(0)) > 0, where r is the nearest point retraction onto C. Let P
be the (n—1)-dimensional subspace through rwm;(0). orthogonal to
(@1(0),r w;(0)] and let H be the halfspace with boundary P, not containing
0(0). Then CCH. Hence €2 d(w(t).C)>d(w(t),H). Also
d(w,(0),H) = d(w,(0),r»;(0)) = d(w(0),C).

After possibly changing the direction of w. we may assume that the
angle 0 between [rw;(0),w(0)] and the tangent vector at { = 0, w}(0),
satisties 0 < 8 < ©w/2. Taking A to be the line containing the orthogonal
projection of |wlin P, t = v and u = d(w(0).rw;(0)). Lemma 2.4.8 (Esti-
mate for distance) gives sinhe > sinhd(w(n).P) > sinhd(w(0),(')coshm
as required.

[aeodesics dip
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2.4.11. Corollary: Convex thickens to strictly convex. If M 1s a con-
vez hyperbolic manifold, Me (see Definition 2.4.8 (Epsilon neighbourhood
of manifold)) is strictly convezr for all¢>0.

2.5. Convex Thickenings

See Proposition 8.3.3 of [T].

2.5.1. Theorem: Nearby structures have convex thickenings. Let N
be a compact manifold with boundary. let M be a conver hyperbolic struc-
ture on N and let Mg, be a thickening of M. Then there 15 a neighbour-
hood U of M in Q(N) such that, if M’ €U, then M’ can be thickened to a
compact convex manifold M".

Proof. By Theorem 1.7.1 {(Neighbourhood 1s a product), we may assume
that all the manifolds in #/ are embedded in N7, by an embedding near to
the identity i:N — Np;, and that the hyperbolic structure on Ngy inducing
the given structure M’ is near to that of M. It follows that we can res-
trict our attention to the varying hyperbolic structure on Np;, and not
worry about the embedding of N in N;. We shall use metrics which come
from the path metric on even larger thickenings. (We have to be careful
here because of examples such as that shown in Figure 1.5.7 )

We choose € > 0 so that My, is a 10e-thickening of M. We choose ¥
sufficiently small so that, if M’ €%, then the corresponding hyperbolic
structure on N7, makes N, a 9e-thickening of N. This is possible by
Corollary 1.7.5 (Epsilon thickenings exist). We define & = 8(¢, €/2), where
& is the function defined in Theotem 2.4.6 (Geodesics dip). Recall that
8 <e€/2. Let KyCint K| CK;C N, where hj and K are compact con-
nected subspaces, and the translates of Ky by the covering translations
cover Ng;. We assume that K| contains an r-neighbourhood of K where
(r—1) is larger than the diameter of M7,. We also assume thag ¥ is small
enough so that d(Dz,D'z) < 8/4, for all z € K. where D,D":Np, — H"
are developing maps for our fixed convex hyperbolic manifold M and for
M' respectively. We shall also assume that D’'|K, is an embedding (see
1.5.4 (Space of developing maps)). Then K is an (r —8)-neighbourhood of
K in the metric d’ related to the structure M".

To define the convex thickening claimed in the statement, we fix
M’ € and let _4 be the collection of (n + 1)-tuples of points (zg, . .., In)
with zi € M¢ and such that d'(zi,r;) < €. For each n-tuple (zg, ...,
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zn) € -4, we take the convex hull €(zy ,..., zn) and set U = U 4C(z,
,+.+, zn). (The convex hull is defined inside an e-ball centred on z;.) We
claim that U is the compact convex thickening we seek. The fact that L is
compact is an immediate consequence of the compactness of 4. The fact
that U is convex will be deduced from its local convexity (see Corollary
1.3.8 (Local convezity smplies convezity)). Given u,v € U, such that
d’'(u,v) < €, we show that the geodesic interval [u,v] isin U. Let u € €(u,
,.-., un)and v €C(vg, ..., vn), where ui, vi € Me for 0 < ¢ < n, and
d'(ui,uj) < eand d’'(vi,v;) < efor0< ¢ < j< n. Then

d(ui,vj) < d(ui,u) + d(u,v) + d(v,v5) < 3e .

It follows that we need only establish the following cJaim. Let {wg, . . .,
wn} be contained in an e-neighbourhood of D'(K,NN)CH", and in a 4e-
neighbourhood of some point_z € D'(Ky(N), and let d(wi, wj) < 3e. Then
Clwg,..., wn)CD'(K;NU), where U is the inverse image of U in the
universal cover.

There is no loss of generality in supposing that d(wg,w;) maximizes
d(wi,wj) (0=1 < j < n). If d(wy, w,) < € there is nothing to do. So we
suppose that d(wg,w;) > €. Let z be the midpoint of [wg,w;]. We divide
C(wg , ..., wn) into two pieces, C(z,w,,ws , ..., wn) and C(z,wy, wy
,--., wn). We want to show that each of these pieces satisfies the
hypotheses _for the claim. By the _definition of U,
d(wi,D(K{NN))< e+ /4 for 0 <1< n. Since DN is convex, Theorem
2.4.6 (Geodesics dip) implies that

d(z,D(N)) < € + 8/4 — 5(e+ 8/4,€/2)
< € + 8/4 — 8(€,8/2)
< € — 38/4.
The second inequality is‘a result of the monotonicity of the function 8(e, n)

in the variable €, pointed out just after Theorem 2.4.6 (Geodesics dip). It
follows that

dz,D'(K,AN)) < €82 < €.

The final point to check is that this chopping in half process gives a
igure with all sides having length less than € after a finite number of steps.
This is not obvious, because, although the longest side is divided in two,
the other sides will, in general, become longer than they were. Let
m = d(wg,w;), and fix m for the next few steps. At each step the number
of edges of length greater than 0.9m decreases. Therefore, after a finite
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number of steps, all sides have length less than 0.9m. (This can be seen by
doing a computation in euclidean geometry. Because we are dealing with a
small region, euclidean estimates give rise to hyperbolic estimates, though
the hyperbolic estimates are slightly worse.) Continuing in this manner,
the length of each side will eventually become less than e.

Nearby structures have convex thickenings

2.5.2. Corollary: Nearby structures strongly complete. With the
same hypotheses as in the theorem above, if M €U, Dy 1s a homeomor-
phism, and M’ can be embedded in a unique complete hyperbolic manifold
with the same fundamental group.

2.5.3 Remarks. We can see that convexity of the original manifold with
boundary is a necessary condition for the above corollary to hold, by con-
sidering M = S3\N(K) (where K is a knot whose complement admits a com-
plete hyperbolic structure.) By considering Dehn surgery space, we see
that nearby hyperbolic structures on Af, do not necessarily admit exten-
sions to complete hyperbolic manifolds. See [T] for more details.

Chapter 3. Spaces of Hyperbolic Manifolds

3.1. The Geometric Topology

We shall define a topology on the set of closed subsets of a topological
space. We shall thereby derive topologies for both the space of complete
hyperbolic manifolds and the space of geodesic laminations (see Section 4.1
(Geodesic Laminations)). This topology was first considered by Chabauty
[Chabauty, 1950] as a topology on the space of closed subgroups of a locally
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compact topological group, and later by Harvey [Harvey, 1977] with
specific reference to Fuchsian groups. See also [Michael, 1951].

3.1.1 Definition. Given a topological space X, the Chabauty topology on
C(X) (the set of all closed subsets of X') has a sub-basis given by sets of the
following form:
1)  O(K)={AlANK =0} where K is compact.
2)  Oy(U) = {AlANU+*D} where U is open.

If X is compact and metrizable, the Chabauty topology agrees with
the topology induced by the Hausdorff metric. The Chabauty topology has
the following nice topological properties.

3.1.2. Proposition: Properties of Chabauty topology. Let X be an

arbitrary topological space (no particular assumptions), then

1)  C(X) the set of closed subsets of X with the Chabauty topology is
compacl.

2) If X is Hausdorff, locally compact and second countable, C(X) is
separable and metrizable.

Proof. 1) By Alexander’s Sub-base Theorem [Rudin, 1973, page 368], we

need only show that every covering by sub-basis elements has a finite sub-

covering. Let the covering consist of:

{01(Ki)lic; and {Oo(Uj)} ey

Let C=X\U¢; Uj. Cis closed and thus C€C(X). C is not in Oy(Uj;)
for any 7, therefore C € O,(Ki) for some 1. {Uj};ey is a covering for Ki, so

there exists a finite sub-covering {UJ-(” e Uj(,,), Given a closed sub-
set L, either LNU j)#Q for some k=1, . n (ie. LEO (U](,,))). or
LNKi= (i.e. L€O,(Ki)). Thus, C(X) O,(K: )UU ~1 OaUj(x));

which is the desired finite sub-covering.

2) Since X is Hausdorfl and locally compact, it is also regular. Sup-
pose K,L € C(X) and z€ K\L. Because X is regular and locally compact,
there exists an open set U such that z€ 'CL'CX— L where U is compact.
So K€0y(U), L €0 (U), and O4(LU)NO(U)=C. It follows that C(X) is
Hausdorfl.

Let {By,..., Bn,... } be a countable basis for X, such that B is
compact for each ;. We claim that {O(Bi)}U{O,(B:)} is a sub-basis for the
Chabauty topology on C(X). Let O,(K) be a sub-basis element (as in our
Definition 3.1.1 (Chabauty topology).), C€0O(K), and {Ba(ty--» Bnayt 2
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covering for K such that CHE,,(,-) = Jfor1 <1< k. Then
C¢ Ol(Bn(,))ﬁ...ﬂO,(I?,,(,,))CO,(K).

Now suppose C€05(U)and z€CNU. Choose B, a neighbourhood of z
such that BCU. Then C€ O4(B)C O4(U). It follows that we have a count-
able subbasis consisting of sets of the form O,(Bi) and Oy(Bi). Then, by
the Urysohn Metrization Theorem C(X) is separable and metrizable.

The following easily proved lemma exposcs the essential geometric
nature of our topology.

3.1.3. Lemma: Geometric convergence. Suppose .X 1s a locally compact.
metric space. A sequence {An} of closed subsets of X converges in C(X) to

the closed subset A if and only if:
1) If{z,k)}€{A,)} converges to 2€X then z€A.
2) Ifz€A, then there exists a sequence {In], where each za 15 an ele-

ment of An, converging lo 1.

The proof is left to the reader.

We now restrict ourselves to the case of closed subgroups of Lie
groups, and prove Chabauty’s original theorem [Chabauty, 1950] (see also
[Harvey, 1977].) The set of closed subgroups of a Lie group L is closed in
the Chabauty topology and is thus compact and metrizable. There is a
right invariant Haar measure on any Lie group, which induces a measure
on I'N\L when I' is discrete. Denote the total volume (which may be
infinite), by wr. When L is I[som(H"). we shall consider instead
ur = vol(H"/I'). The two versions of ur are equal if we normalize

correctly.

3.1.4. Theorem: A(U) compact. Let §(L) be the space of closed sub-
groups of a Lie group L with the Chabauty topology (so that G(L) is com-
pact and metrizable). Let U be an open neighbourhood of {e} in L. then

1) AU)={GEG(L) GNU = {e}} is compact.

2)  B(U)={G€A(U)| G is torsion-free} is compact.

3) The set of discrete subgroups of L is open in the space of all closed
subgroups. It is the union of the interiors in G(L) of the compact
spaces A(U), as U varies over open neighbourhoods of {e}in L.

4) If {I'(n)} is a sequence of discrete subgroups converging to the
discrete subgroup l', then
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wr < lim inf ppe,)

In particular, A(UM) = {GE€A(U)l n(G)< M}, and B(U,M) =

{G €B(U)| p(G)< M} are compact.

Proof. 1) We observe that A(U)=G(L)\O,(U\{e}) is a closed subset of
the compact space §(L ).

2) Suppose 1'i € B(U) converges to ' (which is in A(U) by (1)). If I' is
not torsion-free, there is some y€1" and n >0 such that y®» =e. By Lemma
3.1.3 (Geometric convergence) there exist yi €1'i such that {yi} converges
to y. Thus, {yi"} converges to e, but this would imply that yi®=e for
large values of 1, which is a contradiction.

3) Let V be a compact neighbourhood of e in L small enough not to
contain a non-trivial subgroup and let U/ be a smaller open neighbourhood
of e in L such that U2C V. Let K = V\U. Then any closed subgroup I’
such that I'NK = & also satisfies 'NV = {e}. To see this, let g € 'NV.
Then g €I'NU. Let n >0 be the smallest integer, if any, such that
gn € U. Then g¢n =gn-1g€U2CV. This is impossible. Hence
gn €UC Vforalln >0andso gn €V for all n €Z. But V' contains no
subgroup, so ¢ = e. What we have shown is that O(K) consists of
discrete subgroups. This proves that any discrete subgroup has an open
neighbourhood consisting of discrete subgroups.

We caution the reader that a current important conjecture is that
the set of discrete faithful hyperbolic representations of an abstract finitely
generated abstract group in PSL(2,L) is closed. This is with respect to a
different topology from the Chabauty topology. namely the compact-open
topology.

4) Choose a non-empty open set WCH" (or, in general, WCL) such
that WNT(W) = & for all T€(1'\{e}), and a non-empty compact subset
K of W. Let C ={T€¢L:T(K')NK'" # J}. Cisacompact subset of L.
Also let V be an open neighbourhood of e in L such that I'NV = {e}.
Then I' € O,(C\V). Therefore I'(n) C O (C\V) for n > N. We can also
assume that I'(n)N V" = {e}| for n > N by the proof of 3). Hence,if n > N
and Thn € I'(n), then Th = e or Ta(K')NK" = .

Now W may be chosen to have the same measure as u' and K may
be chosen to have measure arbitrarily close to wi. Therefore,

}Lrgn“_{’n” inf p,'r(,-'?)
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3.1.6 Remarks. Ior those familiar with the theory of Kleinian groups,
the Chabauty topology on the space of discrete subgroups of PSL(2,C) is
equivalent to the topology induced by convergence of Poincaré (Dirichlet)
fundamental polyhedra (with a fixed origin) and their associated face-
pairings.

We now obtain a few useful results of Thurston’s (see Section 8.8 of
[T) and [Thurstonal) as corollaries of Chabauty’s Theorem.

3.1.8 We can think of a complete hyperbolic manifold provided with a
frame (M,e) as a discrete torsion free subgroup I’ of Isom(H "). To do this,
we fix a point s € H" and an orthonormal frame (s; , ..., sa) for the
tangent space to H" at s5. We refer to this fixed choice as the standard
frame in H". Then we choose the developing map for M which takes some
lift of e to s, our standard frame in H". The holonomy of this developing
map gives an unique Mébius group I'. Then (H"\I', s) is a complete hyper-
bolic manifold with baseframe which is isometric (in a frame-preserving
way) to (M,e). In this way we can topologize the space MJ" of complete
hyperbolic Manifolds of dimension n with base Irame, using the Chabauty
topology on the set of subgroups I' of Isom(H"). We call this the
geometric topology on M3I". We topologize M&8", the space of complete
hyperbolic Manifolds of dimension n with £asepoint as the quotient of
73", and MW", the space of complete hyperbolic n-Manifolds Without
basepoint as a further quotient. All of these topologies are known as the
geometric topology.

By Part 3) of Theorem 3.1.4 (A(U) compact), MI" is a locally com-
pact Hausdorff space. M&" is the quotient of MJ" by the compact group
O(n), and is therefore Hausdorff. #%" is not HausdorfT.

3.1.7. Corollary: Set of hyperbolic manifolds compact.

1) 3" (€), the space of complete hyperbolic manifolds with frame, hav-
ing injectivity radius bounded below by € at the basepoint 1s compact
for any € >0,

2)  MB"(e), the space of complete hyperbolic n-manifolds with basepoint
having injectivity radius not less than € at the basepoint, 1s compact.

3)  The space of complete hyperbolic n-manifolds, MW" , is compact.

Proof. Let zj be a fixed basepoint for H" and let I" be a torsion free
discrete group of isometries for H". To prove the first statement, we sim-
ply observe that the injectivity radius at the basepoint is equal to
inf{d(zg,yzg)ly € I'}/2. By the previous theorem the set of such 1" is com-
pact. The second statement follows since M&" (€) is the image of MI" (¢)



Notes on notes of Thurston 35

under the obvious projection map. To prove 3) we recall that every h yper-
bolic n-manifold has a point with injectivity radius not less than e (the
Margulis constant for H"), so i " = Y(M8" (¢)), where Y :M8" — mu"

is the map which forgets the basepoint. D

3.1.8. Corollary: Compact with bounded volume.

1) The space of complete hyperbolic n-manifolds with basepoint having
injectivily radius at the basepoint not less than € and volume not
more than V, ME" (e, V), is compact for any € >0 and any V>0.

2) The set of complete hyperbolic n-manifolds with volume not more

than V, MW" (V) is compact for any V >0.
3.1.9 Definition. A marked hyperbolic surface of finite type is a topologi-
cal surface T of finite type together with an isotopy class of homeomor-
phisms h: T — S where S is a complete hyperbolic surface. Two marked
surfaces hy: T — S, and hy: T — Sy are said to be equivalent (or, some-
times, equal) if there is an isometry ¢ : St —> Sasuch that 4, is isotopic to
ho.

3.1.10 The space of all equivalence classes of marked hyperbolic surfaces
of a given homeomorphism type (where we specify also whether a puncture
is to be a funnel or a cusp) is called Teichmiiller space and we denote it
T(T). An equivalence class of marked hyperbolic surfaces clearly deter-
mines and is determined by its holonomy map Hpp:wy(T) — Isom(H 2)
which is well-defined up to conjugacy. We may thus topologize
Teichmiiller space as a subspace of R(w(T),Jsom(H?))(the set of conju-
gacy classes of representations of m(T) into Isom(H?)) with the compact
open topology (i.e. {pi} converges if {pi(z)} converges for every z €mi(T).)
Teichmiiller space is an open subspace of R(w(T),Isom(H?)) and is in fact
homeomorphic to R69-6-2p “3f }are g is the genus, p is the number of
punctures and f is the number of funnels. For further information on
Teichmiiller space see [Abikoff, 1980] or

To discuss the connection with the geometric topology, we generalize
to any number of dimensions. We first remove the annoyance of dealing
with conjugacy classes, by taking manifolds with baseframe. We can adapt
the geometric topology to this situation, to include the marking. We topo-
logize the space of injective homomorphisms w(T) — Isom(H") onto a
discrete subgroup of Isom(H"), by using the Chabauty topology on the
image, with a further refinement. We are allowed to specify a finite
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number (depending on the neighbourhood we are trying to describe) of ele-
ments of 7;(T) and demand that the images of each of these lies in a cer-
tain open subset (depending on the element) of Isom(H"). We call this the
marked geometric topology. The compact-open topology on the space of
homomorphisms is known as the algebraic topology.

There is an obvious continuous map from the marked geometric
topology to the algebraic topology. This map is not 1 homeomorphism in
general, though we will prove below that it is a homeomorphism for sur-
faces of finite type and also for manifolds of finite volume.

A counterexample to the map being a homeomorphism can be made
for a surface of infinite type. We give a quick sketch. The basic building
block is an infinite strip with one handle. The strip has two boundary com-
ponents. We specify a hyperbolic structure on the building block, by insist-
ing that the boundary components are infinite geodesics, which are asymp-
totic at each end, and that there is an orientation reversing isometry, inter-
changing the two ends of the strip, whose fixed point set consists of a geo-
desic arc joining the two boundary components and a geodesic simple
closed curve going around the handle. There are two parameters for the
hyperbolic structure, namely the length of the arc and the length of the cir-
cle. We glue a countable number of building blocks together in the sim-
plest possible way. In the algebraic limit, the sum of the lengths of the arcs
is convergent. The nth surface has all except a finite number of these
lengths equal to 1. Details are left to the reader.

The finitely generated case is more important. Here a counterexam-
ple can only be given in dimensions greater than two. For example, let

pn:Z — PSL(2,C) be generated by
e nsinhwn ] 1 i

pn(l) = [ 0 £~ U where wn=;;+7.

Then pa converges to p:Z — PSL(2,C) where
1 i
p(1) = 0 1
in the algebraic topology. But {pn(n } converges to

' [o =)= o]

Since {pa(Z)}CB(U) for some open neighbourhood U of e, the geometric
limit of {pn(Z)} must be discrete and torsion-free, and thus a parabolic
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subgroup of rank 2. For a more in-depth discussion of algebraic and
geometric convergence see Chapter 9 of [T]. Here we confine ourselves to
the following case where the geometric and algebraic topologies coincide.

3.1.11. Proposition: Algebraic equals geometric. We restrict our
attention to finite volume complete hyperbolic manifolds (with baseframe).
The map from the space of such manifolds with the geometric topology to
the same space with the algebraic topology is a homeomorphism.

Proof. Suppose {pi:m;M — Isom(H2)} converges to p:m M — Isom(H ?)
in the algebraic topology. We must show that it converges also in the
geometric topology. Let I'i=pi(mw,M) and I'=p(m;M). We choose v€1 to
be a hyperbolic element which is not divisible. Let a €1 M be defined by
p(a)=+v. Then a is indivisible. Let Yi=pi(a)€l'i. By passing to a subse-
quence, we may assume that each vy; is hyperbolic.

, We claim that for some neighbourhood U of the identity,
F'iNU ={e}, for ¢ large. For otherwise (taking a subsequence if necessary)
there is a sequence of non-trivial indivisible elements Bi€l'¢, such that B
converges to the identity. Then [yi, Bi] converges to the identity. But
then [y:, Bi] must commute with Bi for 7 large, by the Margulis lemma.

If B¢ is hyperbolic, this means that [vi, Bi] is a power of Bi, so that Yi
normalizes the subgroup generated by Bi. Therefore Yi is a power of aj,
which is impossible, since y; is indivisible and is not small. If B¢ is para-
bolic, then [yi, Bi] is either trivial or must be parabolic with the same
unique fixed point p. But then [yi, ai]a; ! = y; laiyi fixes p, and so vyi
fixes p. Since yi is hyperbolic, this is also impossible. This proves the
existence of the claimed neighbourhood U'.

By passing to a subsequence, we may assume that |'; converges to
GClIsom(H") in the Chabauty topology. Then GNU ={e} and so G is
discrete. Clearly I'CG.

We want to prove I'= G. So suppose g € G\I". Replacing ¢ by gy*
for a large value of k, we see that there is no loss of generality in assuming
that g is hyperbolic. Since I” has finite co-volume, the index of 1" in G must
be finite. It follows that g% = p(k) for some k >0 and some h €m M.

Let gi €1'i converge to g and let h; = pi(h). Then g; ¥hi converges to
the identity. But we have already shown that this implies hi = gk for large
t. This means that gi centralizes hi. Now the centralizer of a hyperbolic
element in a discrete group is infinite cyclic, and so kth roots are unique.
Hence A has a unique kth root o’ in my M. Then gi = pi(a’) and so
g =p(a’). Hence g €I', a contradiction.
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[

Remark. In the case of a surface M of finite type, the algebraic topology
and the geometric topology coincide, even when we allow surfaces with
infinite area. This can be seen by breaking the surface up into a finite
number of pairs of pants. The geometry of each pair of pants, and the way
they are glued together, is determined by a finite number of elements of

p(m; T)Clsom(H ?).

3.2. e-relations and Approximate Isometries

We now consider a generalization of the concept of Hausdorff metric
which was developed by M. Gromov. Intuitively, compact metric spaces
can be approximated very well by finite subsets of points and locally com-
pact path spaces can be approximated very well by large compact subsets
of themselves. This simple idea developed into the more formal notion of
(e, r)-relations, which provide us with a topology on the space of all com-
plete locally compact path spaces. One of the first applications of this was
also one of the most amazing; Gromov used e-relations to show that if a
_ finitely generated group has polynomial growth then it contains a nilpotent

subgroup of finite index. ((Gromov, 1981a], [Gromov, 1981b]) contains an
extensive investigation into the space of Riemannian manifolds with the
geometric topology. His definitions are related to, but slightly different
from ours. In this section we will establish that the topology induced by
(€,r)-relations when restricted to the space of hyperbolic manifolds with
basepoint agrees with the geometric topology.

3.2.1 Definition. Let (X,z() and (Y,y,) be two compact metric spaces
with basepoint. An e-relation between (X,zy) and (Y,y,) is a relation R

with the following properties.

l) Zo R Yo

2) for each z € X, there exists y € Y such that z R y;
3) foreach y € Y there exists z € X such that r R Y;

4) ifzRyandz’ Ry’ then ldy(z,z')~ dy(y.y')l <e.
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3.2.2. Lemma: Metric on metric spaces. If we define d((X,z¢),(Y,y0))
to be the snfimum of all values of € for which there is an e-relation between
(X,29) and (Y,yq) we obtasn a metric on the set of isometry classes of com-
pact metric spaces with basepoint.

Remark: Of course, the class of all compact metric spaces is not a set in
standard set theory. However, one of the usual tricks can be used to get
around this objection. For example, every compact metric space has a
countable dense subset, so we can consider all completions of all metrics on
any subset of the natural numbers. ‘

Proof. The only thing that needs proof is that if d((X, 29),(Y,y0)) = 0,
then (X,z) is isometric to (Y,yg). To prove this we fix a countable dense
subset {zi} in X. Given a sequence Rn of en-relations between (X,z¢) and
(Y,yo), such that en — 0, we choose points yi.n € Y such that zi Ra Yi,n.
By using the Cantor diagonalization process, we can assume that nliglmyi,n

exists for each 1. We denote the limit by y;. Then
d(xi,:cj) = nli_rpxd(yi,n,yj,n) = d(yi,yj).

So the map which sends {zi} to {y:} is an isometry on this countable set. It
is easy to see that {yi} is dense in Y. It now follows that this map extends

to an isometry between (X,z) and (Y,y,). D

3.2.3 Definition. Two metric spaces with basepoint (X,zg) and (Y,yg) are
(e,7)-related if there is an e-relation between compact subspaces (X, zq)
and (Y, yo) of (X,zq) and (Y,yq) respectively, where Bx(zg, r)C X}, and
By(yg, r)CY,. (Recall from Theorem (Hopf Rinow) that balls of
radius r are compact in a complete, locally com pact path space.)

We can use this notion to topologize the space of (isometry classes of)
complete locally compact path spaces with basepoint, as follows. Let
(X,z9) be a complete locally compact path space with basepoint and let
r >0 and € > 0. We define the neighbourhood N(X,zy.7,€) to be the set of
complete locally compact path spaces with basepoint (Y.,yg) such that
(Y,yo) is (€,r )-related to (X,zg).

3.2.4. Lemma: Space of path spaces Hausdorfl. The space of complete
locally compact path spaces with basepoint is Hausdorff.
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Proof. Let (X,z() and (Y,yq) have no disjoint neighbourhoods. We must
show that they are isometric. We fix r. By the method of Lemma 3.2.2
(Metric on metric spaces), we construct an isometry of (By(zq,r),zg) into
(Y,yo) from a sequence of €n-relations. From the method of construction
and using the fact that Y is a path space, it is easy to see that By(zg,r)
maps onto By(yg,r). Let &r:(Bx(zg.r),z9) = (By(yo.r),yo) be the
isometry. Using Ascoli’'s Theorem and the Cantor diagonalization process,
we can find ¢ : (X,zg) = (Y,yg), such that, for any fixed compact subset K
of X, $|K is the limit of maps of the form ¢+ |K. Hence ¢ is an isometry.

In this way we get another Hausdorff topology on Mé& ", the space of
(isometry classes of) complete hyperbolic n-#Manifolds with Easepomt in
addition to the geometric topology. We shall also use %", the space of
(isometry classes of) complete hyperbolic n-Manifolds Without basepoint,
which is given the quotient topology. Note that M%" is not Hausdorff. As
an example, take a compact hyperbolic surface of genus three, in which a
separating simple closed geodesic becomes shorter and shorter. If the
basepoint is chosen on one side of the geodesic, the limit is a punctured
torus. If the basepoint is chosen on the other side, the limit is a punctured
surface of genus two. If the basepoint is chosen on the geodesic, the limit is
the real line. Thus the sequence has two different limit points in MW?2. We
also see that &2 is not closed in the space of all complete locally compact
path spaces.

We shall also consider 7", the space of all (isometry classes of) com-
plete hyperbolic n-Manifolds with baseIrame. Such a manifold is a pair
(M,e), where M is a complete hyperbolic n-manifold and e = (e, .. .,
en) is an orthonormal frame of the tangent space at a point eg€ M. To
topologize this space using e-relations we introduce another definition.

3.2.5 Definition. Let (M,e;) and (My,e,) be two Riemannian manifolds
with baseframe. Then a framed (e,r)-relation between (My,e;) and
(Mg,e5)is an (e,r)-relation R between (My,e;) and (Ms.e5) together with
the additional requirement that (exp v)R (expt’)if v = 2uiei is a tangent
vector to M at ey, v’ = Zwiei is a tangent vector Lo M’ at eo and
2.02 < re,

A neighbourhood #(M,e,r ) of (M.e) in MI" consists of all pairs (M*,¢ )
such that there exists a framed (e,r)-relation R betwcen (M,e) and
(M’,e’). Note that M3J" has a countable basis of neighbourhoods of each
point. Until a few lemmas are established the e-relation topology is annoy-
ingly difficult to handle. The problem is that the e-relation controls only
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C9 behaviour whereas we need to control derivatives as well.

3.2.6. Lemma: Injectivity radius continuous. Let gr(M,eq) be the
infimum of the injectivity radius at z, as z varies over B(eg,r). Then for
any fized value of r, the function g» : MB" — (0,<) 15 continuous.

Proof. Injectivity radius continuous: Iet zg € B(eg,r) be a point for
which the injectivity radius is minimal. Let Y be a geodesic loop in M of
length 2gr (M, e(), starting and ending at rg. Let (zq,7,,29,23,24) be equally
spaced points with z, = z( along y. Then, since the interior of the ball in
M with centre z and radius gr(M,eg) is isometric to an open round ball in
H", we have
gr(.M,eo)
d(z0,21) = d(21,29) = d(z9,23) = d(z3,7¢) = —

Let (M’, eg) be near (M,eg), and let T, 1, T3, 3 be points such that
zi R z¢ for an e-relation R, where € is small. We write T4 = z3. We choose
geodesic paths By, B, B3, B4 of minimal length, such that B: joins z;_;to
zi. We lift in turn B}, By, B3, B4 to geodesics Y1 Y2, ¥3, V4 in H", such
that the end of yi in the beginning of v;+1 (7 = 1,2,3). We denote the end-
points of yi by y;_, and yi. Now, for i = 0,1,2,
d(yiyive) 2 d(zi,2749) > gr(M,eq) — €

and d(yi,y,;,1) < gr(M,eq)/2 + €. It follows from Lemma 4.2.10 (Curve
near geodesic) that, by taking € very small, we can ensure that the piece-
wise geodesic v,y5Y3Y4 is very close to a geodesic. In particular the end-
points are distinct. This means that B1B2B3B4 is an essential loop of length
at most 2gr(M,eq) + 4€. Therefore the injectivity radius of (M, eg) at z
is bounded above by g-(M,ey) + 2€. Since d(eg,r9) < r + €, we have

gr(M’',eq) < gr-e(M'e) ~ € < g:(M,eg) + 3€ .

We now prove that lim infg,(M’, eg) > gr(M,eg). where the limit is
taken over based manifolds (M’ e ) converging to (M,eg), using the topol-
ogy given by e-relations. So suppose this is false. We take a sequence of
based hyperbolic n-manifolds of the form (M’,e0) converging to (M,eg)
and a fixed r >0, such that g,(M’,eg) < gr(M,e,) - 2¢g, where €5 > 0 is
small and satisfies €y < gr (M, eg)/4.

Let zp € B(eg,r)CM’ and let y:[0,t9] = Af’ be a non-constant geo-
desic loop based at z 4, parametrized according to path length.
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3.2.7 Figure.

We know that there is a correspondence between (M yeq) and (M’ e )
which gives an e-relation between large neighbourhoods of €g and e, with
€ small. Let z( € B(eg,r) correspond to z§ and let (u, , ..., un) be an
orthonormal frame at z,. Let & = gr(M,e()/2. For 1 <i < n, we set
z+i = exp(*dui). In M’ let the corresponding points be z%;. We know
approximately their distances apart in Af’. By lifting shortest paths from
79 to zi (1< lil < n), we obtain points vo. y=i in H". For each 1,
y-iyoyi is a once broken geodesic with d(yg,yi) = & (1< lil< n)and

d(y-i,yi) > d(z-i.1i) > 26 — €.
Therefore y-iygy: is very near to a geodesic of length 25. Also, if
li] # |51, then
d(yi‘,y'j) 2 d(zi,rj) > d(zi,zj) — € = arccosh (cosh25) - e.

It follows that Ly iy gy 5 cannot be much less than 7/2. The same applies to
Lyiyoy-j. Since Yyiyoy"- j is almost straight, we can deduce that
Lyiyoyj is approximately w/2. Therefore we can find an orthonormal

basis vy, ..., un for the tangent space to H" at yp such that exp(*dvi) is
approximately equal to y=i(t <7< n) Nowletybea liftingof yto H",
with ¥(0) = yo. Then y(¢) = exp(t2 aivi) for some (y,..., an)€R"

with 2 a2 = 1. Let z € M be defined by z = exp((£¢/2 + €9)Z aiui) and let
z' € M’ be a corresponding point. We take a shortest geodesic in M’ from
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zg to z' and lift it to a geodesic in H" from Yo to a point which we call y’.
Then

¢
d(yoy’) = d(zg,z') < d(zg,z) + € = —22 +e€+e€

and
d(yi,y’') > d(zi,z’) > d(zi,r) - € for1< il < n.

These inequalities specify the position of y’ reasonably precisely in relation
to the points y g,y . Its position is almost the same as that of z relative to
Zg, xi. This means that y(¢y/2 + ¢g) is very near to y'. In fact their dis-
tance apart converges to zero as € converges to zero. Now

d(z,20) < d(z",20) + € < d(y" ¥(ty/2 - €p)) + d(y(te/2 + €0),¥(fo)) + €.

The first and third terms on the right tend to zero with €, and the second
term is bounded by /2 - ¢, so we see that d(z,z0) < tg/2 — €. But this
contradicts d(z,z9) = ¢¢/2 + €. This contradiction completes the proof.

Injectivity radius continuous

3.2.8. Lemma: Same as quotient. The topology given by e-relations on
hyperbolic manifolds with basepoint is the quotient of the topology given by
Jramed e-relations on manifolds with baseframe.

Proof. Clearly there is a continuous map MI" = ME". The injectivity
radius is greater than some & > 0 throughout a neighbourhood of (M ,€0)-
Let (e;, ..., en) be a fixed orthonormal frame for the tangent space to M
at eq, and let zi = exp(dei) € M. If (M’,ep) is near (M, ey), we have points
Ty,..., zn corresponding to Ty, -.,2n. From eg,z},..., zn we can
form an orthonormal basis (e1,..., en)in a canonical way as tangent
vectors at e as follows. We define ui by the equation ri" = exp(ui), where
the length of u: is almost equal to &, and then we obtain (e}1,..., en)by
applying the Gram-Schmidt process to (g ,..., ua). If (M’,eq) is
extremely near to (M,eg), then it is easy to show that the manifold with
baseframe (M’,e’) is near to (M.e). This shows that the map M3" — Mm&"

is open and the lemma is proved.

There is an alternative way of defining a topology on 3", which we
have already encountered. We fix a standard orthonormal frame (s, . . .,
sn) for the tangent space at a fixed point 5o CH". There is exactly one
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covering map H",s — M,e which is a local isometry. The fundamental

group of M actson H" as a group of covering translations. Thus we can
write 7 (M,e), and we get a well-defined subgroup of Isom(H"). Recall
that subgroups of Isom(H ") are topologized with the Chabauty topology.

3.2.9. Theorem: Map to torsion free subgroups is a homeomor-
phism. The map m, mI" — DI", which sends (M,e) to the discrete tor-
sion free subgroup w,(M,e) of Isom(H"), is a homeomorphism.

Proof. Map to torsion free subgroups is a homeomorphism: To
prove the theorem, first note that the map m, :M3" — BI" is bijective:
given a discrete torsion free subgroup I’ of Isom(H "), we obtain a complete
hyperbolic manifold by taking M = H"/I" and e to be the image of s.

We now prove that m;: 3" — DI" is continuous. We want to
show that if (M',e’) is near (M,e), then w{(M’, ') is near w(M,e) in the
Chabauty topology on the space of subgroups of Isom(H"). By Lemma
3.2.6 (Injectivity radius continuous), we may assume that the injectivity
radius is greater than some 8 > 0 throughout the regions of interest in the
proof we are about to present.

Suppose y € w;(M,e). Let B,,B,, ...,B; be acircular chain of balls in |
M, where Bi = B(zi, 8), z; = eg, zi €y, and the balls cover y. We assume
that the interior of Bi meets the interior of B, . Let zi R z:. We obtain a
chain B'(zt, 8). The holonomy corresponding to this chain is nearly equal
to y. We see this by taking (n +1) generic points in intBi NintB,;,; and
keeping track of the corresponding points in intBiNintB;,;. So if
y€m;(M, e), then v is the limit of elements y' €1 {(M’, e').

We also need to show that if y(¢)€mw;(M(i),e(¢)). and y(i) = v, then
Y€m (M, e). Let sg be the standard basepoint in H". Let d(sg, ysg) = r.
Then the geodesic from sg to y(i)sg has length approximately equal to r,
for large 1. This gives an essential loop in M(7), based at e(t)g, of length
approximately r. It follows that there is a geodesic loop in Al, based at e,
of length approximately equal to r, and the holonomy of this loop is very
near to that of y. Therefore y€ (M, e).

This shows that if (M',e’) is near (M,e) in the e-relation topology,
then, (by Lemma 3.1.3 (Geometric convergence)), w(M’,e’') is near
m(M,e) as a subgroup of Isom(H ") in the Chabauty topology.

Conversely, suppose I'i converges to I' in the Chabauty topology.
We must prove that (H"/I'i,e(#)) converges to (H"/I',¢) where e(:) and e
are the images of the standard point and frame s. Let Ar =
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{g €lsom(H"): B(sg,r)NgB(sq,r) # B}. Then A, is compact. We fix r
and let id, vy, ..., y; be the elements of I" in Ar. Then, for large values
of 1, there are elements id, y(¢); , ..., y(¢) in I'i with y(1); near to vyj.
Moreover, for fixed € > 0 (where € is significantly smaller than §), each ele-
ment in I'iNAr-¢ appears in this list. We can now deduce that a large
compact region of H"/I' is almost isometric to a large compact region of
H"/I'i. In fact the isometry is induced by a map which is C"-near the
identity for large values of i. The proof is the same as that presented in
1.7.2 (Holonomy snduces structure).

Map to torsion free subgroups is a homeomorphism

3.2.10 Definition. Let (M|, e,) and (M, e,) be two Riemannian mani-
folds with baseframe. Then a framed (K,r)-approzimate isometry between
(M, 1) and (M,, e,) is a diffeomorphism f:(X,. e;) = (Xa, €,) such that
By, (z1, 7)C (X1, z)C (M), z4), Bpy(za. 7)C (Xp 29)C (M), 14),

Df(e;)=eq and

A1) Ca(s ()1 (1)< Kd(z,9) for all x yeX, |

We may similarly define (K,r)-approximate isometries, and K-approximate
isometries

There are many possible definitions of an approximate isometry. We
have chosen a relatively strong one (as we require differentiability) and (e,
r}-relations may be thought of as the weakest possible notion of an approx-
imate isometry. However, the proof of the above result tells us that these
two definitions (and thus many other definitions ‘“between” the two) are

equivalent for complete hyperbolic manifolds.

3.2.11. Corollary: Approximate isometries. The topology on M3I"
induced by framed (K, r)- approzimate isometries is equivalent to the
topology induced by framed (e, r)-relations (and thus to the Chabauty

topology).

We now return (hopefully with new insight) to two topics which we
discussed at the end of the last section. We can extend Corollary 3.1.8
(Compact with bounded volume) by verifying that the volume map is con-
tinuous for hyperbolic n-manifolds of finite volume(n >3). Recall that
Theorem 3.1.4 (A(U) compact) only guarantees that this map is lower sem-
icontinuous; recall also that the statement fox:vtwo-manifolds, correspond-
ing to the next theorem, is actually false (for example, a sequence of com-
pact surfaces of genus two may converge to a punctured torus).
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3.2.12. Theorem (Jorgensen): Volume is continuous. The map vol
from the space of hyperbolic n-manifolds(n >3) of finite volume with
baseframe to R which takes each manifold to its volume is continuous.

Proof. Suppose (M, ei) converges to (AM,e). Notice that for hyperbolic
n-manifolds (n >3) the thick part is connected, since the boundary of each
component of the thin part is connected. Also, we may assume that
injpy,(ei)>€ for some € >0 and that vol(AM:)< V' for some V and all 1.
There exists a bound on the diameter of M) in terms of V" and € for all
€>0, so M; (, «) converges to M ¢ ) using only the topology induced by K-
approximate isometries (since they are all compact and of uniformly
bounded diameter). Thus, {vol(M, ¢, x)} converges to vol(Mi ».)) for all
€ >0. But since the volume of the thin part converges to 0 as € converges to
0, we see that {vol(Mi)} converges to vol( M) D

When we apply the above analysis to the two-dimensional case we
obtain:

3.2.13. Proposition: Mumford’s Lemma . The subset M(T)s of MW"
consisting of all finite area surfaces homeomorphic to a given surface T
with no closed geodesics shorter than some & >0 is compact, for any & >0.

Proof. Simply notice that if S€M(T)s, S 3',x) is connected for all ' <3.
Then the argument above proves that #( T)s is a closed subset of mU2(A)
where A =area(S). But since MW?2(A) is compact by Corollary 3.1.8 (Com-
pact with bounded volume) so is M( T)s. | U

3.2.14 Remarks. Thurston has further proved that the set of volumes of
complete hyperbolic 3-manifolds form a closed. non-discrete set in R ...
This set is well-ordered and has ordinal type w®. For a detailed discussion
of this result see 6.6 of [T] or [Gromov, 1980]. Thurston (see Section 6.6 of
[T]), has also shown that there are finitely many complete hyperbolic mani-
folds of any fixed volume, but in [Wielenberg, 1981] it is shown that there is
no bound on the number of complete hyperbolic manifolds of a given
volume, by proving that there exist fundamental polyhedra with arbitrarily
many associated non-conjugate Kleinian groups. In [Wang, 1972] it is
shown that there are only finitely many hyperbolic manifolds with volume
less than any given real number.
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3.2.15 We finish this section by returning briefly to the subject of marked
hyperbolic surfaces. We may also topologize the Teichmiiller space of a
surface of finite type using approximate isometries. We may define the K-
neighbourhood of a marked surface [h:T — S ] to be the set of all marked
surfaces [h':T —> S’] such that there exist representatives b and k' for [A]
and [k’] and a diffeomorphism ¢:5 — S’ which is a K-approximate
isometry when restricted to the respective convex cores and such that ¢-h
is isotopic to A’. Such neighbourhoods form a basis for the topology of
Teichmiiller space; it is left to the reader to to satisfy himself that this
topology agrees with the topology defined in the last section. Equivalently,
one may also topologize Teichmiiller space using e-relations, but approxi-
mate isometries are more frequently used.

Chapter 4. Laminations

4.1. Geodesic Laminations

For a more detailed treatment see [Casson, 1983], or [Harer-Penner,
1986], or Chapter 8 of [T].

4.1.1 Definition. Let S be a connccted complete hyperbolic surface.
Then a geodesic lamination on S is a closed subset A of S which is a dis-
Joint union of simple geodesics of S (which are called leaves of the lamina-

tion)
Remark: We allow the empty set as a geodesic lamination.
We denote the set of all geodesic laminations on S by GL(S).
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4.1.2 Definition. If A is a lamination on S, then a component of S~A is
called a flat piece or a complementary region.

In general these need not be simply connected and may have a finite or
infinite number of sides. The leaves of the geodesic. lamination which form
the boundary of some complementary region are called boundary leaves.
For a surface of finite area there is an upper bound on the number of com-
plementary regions, since each has area nw for some positive integer n.
Moreover each complementary region has finite type. On a surface with
finite area, the set of boundary leaves is dense in the geodesic lamination.

4.1.3 Definition. A lamination such that each complementary region is
isometric to an ideal triangle is said to be marimal.

We shall see, from Theorem 4.2.8 (Structure of lamination) that any lami-
nation on a surface of finite area can be extended by adding a finite number
of new leaves to obtain a maximal lamination.

On a surface of finite area, any geodesic lamination has measure zero
in the surface. Equivalently any Cl-curve C transverse to the geodesic
lamination intersects it in a set of measure zero in C. Since S is a complete
hyperbolic surface, its universal cover is H2. We may lift a lamination A to
H?2 to obtain a lamination \ on H?2, which is invariant under the action of
the covering transformations (which are elements of some Fuchsian group
). '

Consider the closed unit disk B2 as the compactification of H2. The
space of geodesics is homeomorphic to an open Moébius band M. (See
[Epstein-Marden).)

4.1.4 Transferring laminations. Given a geodesic lamination Ajona
complete hyperbolic surface S, of finite area, and a homeomorphism ¢ onto
a complete hyperbolic surface S, of finite arca. the lamination Ay can be
canonically transferred to a geodesic lamination Ao of S9. The reason is
that the homeomorphism can be lifted to an equivariant map from H?2 to
H? which extends to a homeomorphism between boundary circles. Since a
geodesic is an unordered pair of elements of #H 2, we see how to transfer a
geodesic in §; to a geodesic in S,. This transfer induces a canonical
homeomorphism ¢#:GL(S,) — GL(S,), which only depends on the iso-
topy class of ¢.

4.1.5 Definition. The Chabauty Topology is the topology induced on
GL(S) as a subspace of C(M), the set of closed subsets of the open Mébius
band M with the Chabauty topology (see Section 3.1 (The Geometric
Topology) for the definition of the Chabauty topology).
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I $ has finite area, a lamination on S is determined by its underlying
point set (see Proposition 4.1.6 (Lamination determined by pointset)). We
can therefore also topologize G.£(S) using the Chabauty topology on sub-
sets of H2. We shall also see that these two topologies are homeomorphic.

If € is small, S(O,e) consists entirely of cusps. All simple geodesics
entering a cusp are asymptotic to each other; they are orthogonal to the
horocycles. Therefore a lamination on § is completely determined by its
intersection with § [e,):

4.1.6. Proposition: Lamination determined by pointset. Let S be a
complete hyperbolic surface of finite area. Let C(S) be the space of closed
subsels of S with the Chabauty topology and let L CC(S) be defined by

L ={X:X = |\| for some lamination ACS}.

Then L 15 a closed subset of C(S) and the map GL(S) = L defined by
AN—|A] is a homeomorphism. In particular, the topologies snduced by
regarding GL(S) as a subset of C(M) and C(S) agree.
Proof. We need only show that GL(S) — L is continuous and injective,
since a continuous injective map onto a Hausdorff space is a homeomor-
phism. Geodesic laminations on a surface of finite area are nowhere dense,
so no two laminations can share the same underlying pointset. (We note
that this is not true for surfaces of infinite area.) Thus, our map is injec-
tive.

So suppose that {\i} converges to \ in GL(S). Then, given a point
z € I\l, z lies on some geodesic /, and ! is the limit of geodesics i € A\¢ as we
see by looking in the universal cover of S. We choose zi € li, such that z;
converges to z. This is the first condition for the convergence of [Ai| to |\
To prove the second condition, we suppose that zi € |\i| and that zi con-
verges to some point z. We must show that z € |]\|. We have z; € &; € \;.
By lifting to the universal cover, we see that we may assume /i converges to
[ €\, and that z € /. Hence z € I\|. This completes the proof of the propo-

sition. D

4.1.7. Proposition: GL(S) compact. §.L(S) is compact, metrizable and
separable in the Chabauty topology. :

Note that this is true even if S is not compact.
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Proof. By Proposition 3.1.2 (Properties of Chabauty topology) it is
sufficient to show that §.£(S) is a closed subset of C(M), where M is the
open Maobius band.

Suppose we have a sequence of geodesic laminations {\i}CG.L(S)
with limit A€ C(M). By Lemma 3.1.3 (Geometric convergence) this means
that every geodesic of A is the limit of a sequence of geodesics, one in each
Ai, and that every convergent sequence of geodesics, one in each Ai, con-
verges to a geodesic of A.

Let S=H?%/I". We need to check two things: that A\ is a disjoint
union of geodesics, and that X\ is invariant under I'. Suppose [ and k are
two leaves in A and that /i converges to | and ki converges to k where
li,ki €\¢. Since li and ki are disjoint or equal for each 7, the same is true of
[ and k. To check that A is |'’-invariant, recall that if a group acts on a
space, then, for any subset X which is pointwise fixed under I, its closure
X is also fixed under I'. Here the space is C(M) and the subset X is the
countable set {A:}C C(M). So A is a lamination and thus §f(S) is closed.

The following lemma results immediately by applying Lemma 3.1.3
(Geometric convergence).

4.1.8. Lemma: Geometric convergence for laminations. If (li ) and
(ki) are two sequences of geodesic laminations converging to | and k
respectively, with [ Cki for all 1, then [Ck.

We set GLM(S) to be the set of maximal laminationson §. Then

4.1.9. Lemma: GLM closed in GL. Let S have finite area. Then
GLM(S) 1s a closed subset of GL(S).
Proof. We shall work in C(S), the set of closed subsets of S.

Suppose A is not maximal, and A — A, with each Ai maximal. Let
P be a complementary region for A which is not an ideal triangle. First we
show that P can have no simple closed geodesics in its interior. For if K is
the underlying pointset of such a geodesic, then X\ € O,(K) and so
Ai € O((K) for 1 large. But this means that there is a simple closed geo-
desic in a complementary region of Ai which is forbidden. Hence P is a
finite sided polygon. '

It is easy to construct a connected compact subset K in the interior
of P such that each geodesic in P meets the interior of K and such that
A€O(K). If ¢ is large, then Ai contains geodesics near the boundary
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geodesics of P, and Ai € O,(K). Morcover none of the geodesics of A¢ meet
K. Let Pi be the complementary region of i in which K lies. We can see
that among the boundary geodesics of Pi, there are geodesics very near to
each of the boundary geodesics of P. Therefore some leaf of Ai must pass
through K since \i is maximal. This contradiction proves the result. U

We now discuss another topology on GL(S), which we call the Thurs-

ton topology. The reference for this is Section 8.10 of [T], where it is
referred to as the geometric topology.
4.1.10 Definition. The Thurston topology on GL(S) is the topology
induced by once again treating G.£(S) as a subset of C(S), but with the
topology  generated by sub-basis elements of the form
Ox(V)={A€C(S)IANV =D}, where V isopenin S.

So we see that a neighbourhood of a geodesic lamination A contains
all geodesic laminations A\’ such that AD\".

Note that this topology is strictly weaker than the Chabauty topol-
ogy and is non-Hausdorff, but it is more closely related to the consideration
of pleated surfaces. For example, a sequence of surfaces, bent along a single
geodesic converges to a geodesic surface if the bending angle converges to
zero. The sequence of laminations corresponding to the surface converge to
the lamination corresponding to the limit surface in the Thurston topology,

but not in the Chabauty topology.
The analogue of Lemma 3.1.3 (Geometric convergence) is

4.1.11. Lemma: Geometric convergence in Thurston topology. If
(Ai) converges to N in the geometric topology then. given any geodesic [ €\,
there is a sequence of geodesics (Ii), where li €\i, which converges to [.

4.2. Minimal Laminations

See Section 8.10 of [T).
4.2.1 Definition. A non-empty geodesic lamination A is said to be
minimal if no proper subset of A is a geodesic lamination.
A single geodesic is a minimal lamination if and only if it is closed subspace
of the surface (either a simple closed geodesic, or an infinite geodesic, with
each end converging to a cusp).



52 Canary, Epstein, Green

4.2.2. Lemma: One or uncountable. Lef A be a minimal lamination on
S. Then either
1) N consists of a single geodesic, or

2) X is uncountable.

Proof. Let ! bealeafof A. If [ is isolated, then A\/ is again a lamination.
Since A is minimal, A\! = &, so that Condition 1) holds. So we assume
that ! is not isolated. Take some point z on ! and a small transverse line L
through z. Since [ is not isolated, z must be an accumulation point of
LNX in L. But since LNA is closed and each point is an accumulation
point, it is a perfect set and is thus uncountable. Since each leaf of A inter-
sects L at most a countable number of times, A must have uncountably

many leaves.

We now discuss hyperbolic surfaces of finite area in order to discover
precisely the structure of any lamination on such a surface

Let S be a complete hyperbolic surface without boundary, and let A\
be a lamination on S. We cut S along A. The formal definition of this pro-
cess is to take S\A with its Riemannian metric, and complete it. We obtain
a complete (possibly disconnected) hyperbolic surface with geodesic boun-

dary.

4.2.3. Lemma: Building a surface. Let Ay, ..., A be a finite set of
tdeal triangles. Let(A,B,), ..., (Ar,Br) be r pairs made up from 2r dis-
tinct edges, chosen from the 3k edges of Ay ,..., A;. Let
hi:Ai = Bi (1<i<r) be an isometry. Identifying using the hi, we obtain a
hyperbolic surface, possibly with boundary. The completion of this surface
consists of adding a finite, possibly emply, collection of simple closed boun-
dary geodesics.

Proof. Each end E of an identified edge gives rise to two other ends E’
and E" of identified edges, namely those that occur on either side of E , see
Figure 4.2.4 . Possibly £’ = E”, and possibly E = E' = E”. (The last
case occurs when, say, two edges of A, are identified with each other with a
certain choice of orientation.) Here £ and E' have a common ideal vertex
in one of the ideal triangles Ay, ..., A, and similarly for £ and E".
Thus, the ends of identified edges can be arranged in cycles (Ey,..., Es),
where Ei and E;, | have a common ideal vertex (interpreting E, . as E,).

We can explicitly work out the local geometry of the piece of the sur-
face arising from such a cycle. In the upper half plane model, it is obtained
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4.2.4 Figure.
from the strip
{(z.9)l0<s <1, y >k}
modulo the gluing map z + 2z +1, or from the strip
(z.9)l1<z2<a, y > ka}

modulo the gluing map z + az. The first case givesus a cusp. The second
case is isometric to the sector {(z,y)l y > &z, z >0} modulo z — az. The
completion gives us the geodesic {z=0, 1<y < a}/{z — az}, and our piece
of surface is a nice neighbourhood of this geodesic. D

4.2.5. Corollary: Bound on boundary components. Using the same
notation as in the preceding lemma, the number of boundary components is

at most 3k —r.

Proof. The 2r edges{A;,B,...., Ar. B} give rise to r edges in the sur-
face. So there are at most r cycles of edges of the type described in Lemma
4.2.3 (Building a surface). Hence there are at most r new boundary com-
ponents in the completed surface. It follows that the glued up and com-
pleted surface has at most 3k —2r +r = 3k —r boundary components. D

4.2.6. Lemma: Non-compact surfaces obtainable. Every finite area
complete hyperbolic surface S with geodesic boundary can be constructed
(non-uniquely) by the above process, ercept for a compact surface without
boundary. In the case of a compact surface without boundary we start by
cutting the surface along a simple closed geodesic, and then cut what
remains into triangles. If S is non-compact and 4S has only non-compact
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components, then the completion step, after gluing the triangles together,
can be avoided by cutting up into triangles correctly.

Proof. By doubling S we obtain a complete finite area surface without
boundary. It follows that S has only a finite number of boundary com-
ponents. Also it is easy to see what S must look like topologically.

If we have a cusp or an ideal vertex z in §, we may cut a finite
number of times along geodesics from r to r. We eventually get a disjoint
union of surfaces, each of which is an ideal polygon or an annulus. An ideal
polygon may be cut into triangles. In the annulus case, we may assume
that one boundary is a geodesic from r to r and the other a geodesic circle
or a cycle of non-compact oriented geodesics By, ..., B, with the posi-
tive end of one geodesic asymptotic to the negative end of the next. In the
annulus case we can make the surface simply connected by cutting along a
geodesic from z to an end point of one of the Bi, or by cutting along a geo-
desic from z which spirals around the simple closed geodesic at the other
end of the annulus. This deals with the non-compact case. If S is compact
with boundary, we reduce to the previous case by cutting along a geodesic
which spirals to the boundary at each end. If S has no boundary, we cut

first along a simple closed geodesic. D

4.2.7. Corollary: Another bound on boundary components. Let S be
a complete hyperbolic surface of finite area A with geodesic boundary. Let
b be the number of boundary components. Then wb <3A.

Proof. Let S be obtained by gluing together k ideal triangles and com-
pleting. Then

b = w(3k—r)=3A-rm
using Corollary 4.2.5 (Bound on boundary components). U

4.2.8. Theorem: Structure of lamination. Let A\ be a lamination on a
complete hyperbolic surface of finite area with geodesic boundary. Then A
consists of the disjoint union of a finite set of minimal sublamsnations of A
together with a finite set of additional geodesics, each end of which esther
“spirals’’ onto a minimal lamination or goes up a cusp. Each of the add:-
tional geodesics 1s tsolated — it 1s contained tn an open subset which 1s dis-
Joint from the rest of the lamination. Each cusp contains only a finite
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number of geodesics of \.
Proof. Structure of lamination: First note that minimal sublamina-
tions exist. On a compact surface, this is a consequence of compactness in
the usual way. On a non-compact surface, we take the intersection with
the thick part of the surface and argue there. Recall that if we cut along
any lamination we obtain a finite number of components, since each com-
ponent has area n for some integer n.

If we cut S along a sublamination A; of A we obtain a new surface S’
with a new lamination A’ obtained from X in the obvious way. Let A, be a
minimal sublamination of A\. We claim that the minimal sublaminations of
A correspond one-to-one with the minimal sublaminations of \’, except
that A, itself disappears and is replaced by one or more new boundary
leaves of S, each of which is minimal in A\’. (These boundary leaves form
the set of points added in the process of completion.) Each boundary leaf is
of course minimal. If A5\, and \, is minimal in X, it is clearly minimal in
" A’. A minimal sublamination A3 of A\’ is either a boundary component of
S’ oris disjoint from dS’. In the second case A3 is a minimal sublamination
of A. In the first case, A3 is either a component of 45, in which case it is
minimal in A, or a new component of 3S’. So the claim is established.

To prove the theorem, we cut successively along minimal sublamina-
tions which are not boundary components. By our claim, each such
minimal lamination is minimal in A. Each cut increases the number of
boundary components. Since this number is bounded by Corollary 4.2.5
(Bound on boundary components), the process ends. This shows there are
only a finite number of minimal sublaminations.

To complete the proof of the theorem, we need a lemma.

... 4.2.9. Lemmma: L finite. If all minimal sublaminations are contained
in the boundary, \ 1s finite.

Proof. L finite: We define a corner of S to be the cusp-like region lyving
between two asymptotic boundary components of S. A corner of a com-
plementary region is defined similarly, by completing the complementary
region. If we double S, then the double of a corner is a cusp. First note
that each corner of § and each cusp of S can contain only a finite number
of geodesics of A, since the area bounds both the number of complementary
regions and the number of corners in each complementary region. Let K be
the compact subspace of S obtained by cutting off the corners and cusps.
(K is the intersection of S with the thick part of the double of S.) Every

simple geodesic in S meets K.
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Suppose that A is infinite. Then there is a sequence of disjoint geo-
desics in A converging to a a geodesic [€A. By what has already been
shown, neither end of / can enter a cusp or corner. Hence [ lies in K. So
the closure of [ is compact.

We claim that {NaS=O. To see this note that if a component B of
dS is contained in /, then B is a circle since [ is compact. Each leaf of A
which is near B must spiral onto B. Since there is a bounded number of
corners in each complementary region of A, and each spiral gives rise to a
corner, there are only a finite number of leaves spiraling onto B. Since [ is
a limit of an infinite sequence of distinct geodesics of A, [ cannot spiral onto
B. Therefore | contains a minimal sublamination disjoint from d5. This

contradicts our hypothesis.

L finite

This completes the proof of the theorem

Structure of lamination

4.2.10. Theorem: Curve near geodesic. Let € >0 be fired. Then there
s a 8 >0 with the following property. Let a be a piecewise geodesic curve
parametrized by arc length in H" , whose pieces have length at least € and
such that pieces with a common endpoint meet at an angle greater than
w—3. Let B(t) be the geodesic parametrized by arc length, joining the

endpoints of a. Then d(a(t), B(t))<e forallt.

4.2.11 Figure.

Proof. Curve near geodesic: First we need a lemma which determines
the situation in a triangle.
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. 4.2.12. Lemma: Angle derivative. Let T be a fized point and let Y
move along a fized geodesic containing a fized point X. Set t=d(X,Y)
and z=d(Y,T). Set 0=(XYT. We regard z and O as Junctions of t.

Then

, _ —sin@
0" = tanhz
T
b &
o
Y t - X

4.2.13 Figure.

Proof. Angle derivative: From the hyperbolic law of sines we see that
sinh zsin 0 is constant. Also z’ = cos8. The result follows.
Angle derivative

Continuation, proof of Curve near geodesic: Let 6(¢) be the angle
between the geodesic from a(0) to a(t) and the geodesic subarc on which
a(t) lies. At the bends in «, 6 is discontinuous, jumping by less than §.
Over the first segment of a, 0=0'=0. Let 0= tp<t;<...<t be the points
at which « is not geodesic. Then ti+1—t > € for each :. We claim that
0(t)<e for all ¢t. If not, let (¢, t;+) be the first interval on which we do
not have 6(¢)<e. On (¢y,t;), 6=0 so that i>1. Since 8 is monotonic
decreasing on each subinterval, the limit of 8(t) as t decreases to ¢ is
greater than €, and 0(¢)>e—~8 on (t;-1,ti). From Lemma 4.2.12 (Angle

derivative) we see that, on (¢;_,, ti),
0’ < —sin(e—3)
so that
0(t;_1) > (€=5) + esin(e—») .
If we choose & very small, then the right hand side is bigger than €, which is

a contradiction, proving the claim.

It now follows that, by taking & small, we can make 0(¢) uniformly
small. This ensures that dz/d! is near 1, whére z=d(a(0), a(t)), so that
d(a(0), a(t)) is uniformly near ¢.

Curve near geodesic
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The following is a result which is frequently used.

4.2.14. Theorem: Finite laminations dense. On any fized hyperbolic
surface of finite area, the finite laminations are dense in the space of all
geodesic laminations, with the Chabauty topology. Hence the same 1s true
with the Thurston topology.

Proof. Finite laminations dense: We recall (from Theorem 4.2.8
(Structure of lamination)), that any lamination is the union of a finite set of
disjoint minimal laminations p, ,..., p;, and a finite set of isolated
leaves. We first approximate the minimal laminations.

... 4.2.15. Lemma: Approximating minimal laminations. Let . be a
minimal lamination on a complete hyperbolic surface. Then pm can be
approzimated in the Chabauty topology by a simple closed geodesic.

Proof. Approximating minimal laminations: We fix a point p € m
and consider a geodesic arc in p starting at p. Given € > 0, we can get
within € of each point of ||, by taking the length of the arc long enough.
We then expand this sideways to a strip P, of parallel geodesic arcs in u of
the same length. We assume that this strip has width less than € at any
point along its length.

Let y be the complete geodesic of . through p. We orient y and this
orients each arc of -y which lies in the strip P. There are two possible situa-
tions. The first is that there are two arcs a; and a, of the strip, lying in
v,oriented in the same direction along the strip, which are not separated in
the strip by an arc aj of vy, lying between a; and ag as we travel along v.
In that case we get a simple closed curve, as shown in Figure 4.2.16 . The
second possibility is that the first possibility does not occur. In that case
the first three arcs of v in which y meets the strip must be arranged as in
Figure 4.2.17 . In each case the simple closed curve is essential and the
homotopic geodesic approximates w. To see that the homotopic geodesic
approximates ., we change the transverse arc of the construction to an arc
which is almost parallel to the arcs of the strip (see Figure 4.2.18 ). We
then apply Theorem 4.2.10 (Curve near geodesic).

Approximating minimal laminations

Continuation, proof of Finite laminations dense: To complete the
proof that any lamination can be approximated by a finite lamination, we
approximate each minimal sublamination u; by a simple closed geodesic
Cij (1< 7 < k). Then S\C{U...UC} is nearly the same as S\ U...Up,;.
The difference is that complementary regions of S\p,U...Upn, become
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4.2.18 Figure. Construction of the simple closed curve when the orientations agree.

joined up in S\C;U...UC; through thin gaps between geodesics which
were closed offin S\p U...Up,. It is easy to make sure that the geodesics
Ci do not intersect each other since each minimal lamination intersects the
convex core in a compact set, and these compact sets are then separated by
fixed distances.

Geodesics in S\C,U...UC} corresponding to the isolated geodesics
of S\p U...Up, can now be drawn in. In the complement of a finite lami-
nation they will extend through the new gaps and spiral around one of the
geodesics Cj.

Finite laminations dense

We have the following corollary;
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4.2.17 Figure. Construction of the simple closed curve when the orientations do not

agree.
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4.2.18 Figure.

4.2.19. Corollary: Finite laminations dense in GLM. The set of finite
mazimal laminations in GLM(S) is dense

Proof. Suppose that A is maximal, then by the theorem above there is a
sequence (Ai) converging to A, where each of the A finite. Each A¢ can be
extended to a finite maximal lamination Ni. Then ()u) converges to a lami-
nation A which contains A. But since A is maximal, A=\ and so we have a
sequence (i) converging to A as required. D
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Chapter 5. Pleated Surfaces

b.1. Introduction

We now discuss pleated surfaces, which are a basic tool in Thurston’s
analysis of hyperbolic structures on three-manifolds. See Section 8.8 of [T].

In [T}, pleated surfaces are called uncrumpled surfaces.

Recall from Definition 5.2.8 (Isometric map) that an isometric map
takes rectifiable paths to rectifiable paths of the same length.
5.1.1 Definition. A map f: M — N from a manifold M to a second mani-
fold N is said to be homotopically incompressible if the induced map
S« (S) = w (M) is injective.
5.1.2 Definition. A pleated surface in a hyperbolic three-manifold M is a
complete hyperbolic surface S together with an isometric map f:S > M
such that every point s €S is in the interior of some geodesic arc which is
mapped by f to a geodesic arc in M. We shall also require that f be homo-
topically incompressible.
Note that this definition implies that a pleated surface f maps cusps to
cusps since horocyclic loops on S are arbitrarily short and f is isometric
and homotopically incompressible.
5.1.3 Definition. If (S,f) is a pleated surface, then we define its pleating
locus to be those points of S contained in the interior of one and only one
geodesic arc which is mapped by f to a geodesic arc.

An example of a pleated surface is the boundary of the convex core.
(See [Epstein-Marden].)

5.1.4. Lemma: Pleating locus is a lamination. Le! (S,f) be a pleated
surface. Then the pleating locus of (S,f) is a geodesic lamination and the
map [ 1is totally geodesic in the complement of the pleating locus.

Proof. We need only consider pleated maps from H? to H3 since we can
always work in the universal covers. Let Y be the pleating locus of a
pleated surface f:H2 — H3. If z¢vy, then there are two transverse geo-
desic arcs through z. Let [a z b] and |c z d| be geodesic arcs in H?2,
mapped by f to geodesic arcs [a'z'b’) and [¢'z°d’]in H3. LetLia zc=8.
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Then Lbzc=m-8. Since [ is isometric, d(a’, c')<d(a,c). Hence
0'=La'z"c'<0. Similarly b'z’'c’ <lbrc, so that w—0'<m-9.
Hence 8°=8. It now follows that d(a’,c’) = d(a,c) and that f maps the
geodesic [a,c] to the geodesic [a’,c’]. This implies that f is totally geo-
desic in a neighbourhood of z. In particular we see that the pleating locus

is a closed set.

Qa

5.1.5 Figure. Diagram showing two transverse arcs which are mapped by [ to

geodesics.

Now let z €+, the pleating locus of f, and let z lie in the interior of
the open arc a, such that f|a is geodesic. We take o maximal with this
property and we claim that o is a complete geodesic. For if not, let y be a
finite endpoint of @ and let z be a point on «, on the other side of z from y.
Let [a y b] be a geodesic arc (a,y,b distinct), on which f is geodesic. Then
[a y b] meets the geodesic containing « only in y. by the maximality of «.

5.1.8 Figure.
Since f is isometric, d(fa, fz)<d(a,z) and so Lfa fy fz<lay 2.
Similarly £fb fy f2<¢b y 2. Since these angles add up to w, we must have

equality in each case. Hence f maps the geodesic [a,2] to the geodesic
[fa,fz]. We deduce that [ is geodesic on the triangle za b. But this
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contradicts the fact that z€y. The contradiction shows that a is a com-
plete geodesic.

The same argument, with y defined as any point of a which is not on
the pleating locus, shows that aCly. D

5.2. Compactness Properties of Pleated Surfaces

See Section 8.8 of [T].

We now wish to consider the space of all possible pleated surfaces (in
all possible 3-manifolds), and derive the various compactness results which
will be used later in our paper and are also used elsewhere in Thurston’s
work.

Let PS3T be the set of Pleated Surfaces with baseFrame. More pre-

cisely, PSJ is the set of triples (I'y, I'g,f), where I'y is a torsion free disErete
subgroup of Isom+H2, Iy is a torsion free discrete subgroup of Isom H3

and f is a pleated map such that there exists a homomorphism k:1'; = I',
with
1) f(so) = sg (recall that sg is a fixed basepoint in H? and we are think-
ing of H? as embedded in H3);
2)  foT = h(T)ef for TEly;
One often assumes also that 4 is injective, but if we assume this, we will
state it explicitly.
We topologize P9 by using the Chabauty topology for the groups
I'y and I'; and the compact open topology for f.

Let S be a stratum for the pleating locus. Then f|S = A(S)IS for
some A (S) € Isom(H3). (Since H? is embedded in H3, the isometries of H3

map H2into H3.) Let T €I',. Then
fITS = (fT)ISsT V| Ts
= (h(T)f)IS-T "M TS
= h(T)A(S)T TS .

Hence TS is contained in some stratum of the pleating locus. Applying the
same argument to T !, we see that I’y preserves the pleating locus.
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- Note that there is an induced basepoint preserving map
S:H2U |, = H¥1'y and that A is the induced map of fundamental groups.

5.2.1 Definition. We define PSJF(A ) to be the set of triples (1, 1,
f)€PSTF, such that Area(H¥1'|)< A, the injectivity radius of H3/I'; at s,
is greater than or equal to € and the injectivity radius of H2/l'l is greater
than or equal to € at s,

Let |S| be the topological type of a surface S. Note that |S| deter-
mines Area(S) via the Euler characteristic. Note also that if we assume
that A is injective, the assumption on the injectivity radius in the domain
in the preceding definition follows from the assumption in the range,

because f is isometric.

5.2.2. Theorem: Compactness of pleated surfaces. PSJ(A ) s com-
pact.

In our experience facts about pleated surfaces are accepted far too
readily by readers of Thurston’s notes. Here are some examples which
show how naive intuition can go wrong and which explain why the
hypotheses in the theorem are necessary.

5.2.3 Example 1. Let ABC be a small equilateral hyperbolic triangle in
H3. Let a, B and Y be the geodesics orthogonal to the plane of ABC,

through A, B and C respectively. On H2 we fix a geodesic / and mark out
lengths along ! equal to the sidelength of ABC. We denote these marks by

.A_{.B_1,C_1,A¢,By,Co.A1,B,,C...

Let an, Bn and yn (n € Z) be the geodesics orthogonal to ! in H2. Let f be
the obvious pleated map which sends An to 4. Ba to B, Cn to C, an to a,
Bn to B and yn to y. We are taking I’y = I'y = id here, so f is homotopi-
cally incompressible.

If we take the limit as the triangle shrinks to a point, we get a limit
map which is orthogonal projection of H? onto a line. In particular f is not
isometric.

This example shows that it is essential for the area of H?%/I'; to be

bounded.
5.2.4 Example 2. Here is another example, due to Thurston. Let P be a
fixed pair of pants. We fix a hyperbolic structure Pg on P, with geodesic
boundary components. We define a map f : P — P which sends the gen-
erators of P, which we call z and y, to ryr and yz respectively. The
map on homology is the familiar matrix
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]

The boundary components of P correspond to the elements z, y and zy of
wP. They are sent to zyr, yz and zyzyr respectively. The map
f":P - P sends z and y to loops whose geodesic representatives have
exponentially increasing length. Using Theorem 5.3.6 (Finite laminations
realizable) we can find a hyperbolic structure Pn on P, with geodesic boun-
dary components and a pleated map fn representing f/". Let an be a geo-
desic arc of minimal length joining two distinct boundary curves of Px.
Then the length of an tends to zero. We choose as a basepoint for Pn the
midpoint of an and we choose the image under fn of this basepoint as a
basepoint for Py. The pleating locus consists of the boundary components
plus three spirals which cut Pa up into two ideal triangles.

Now fn: Pn — P, does not converge to a pleated surface. In fact, in

the appropriate sense, Pn converges to a straight line. We get an example
between closed surfaces of genus 2, by doubling Pn and P,. However,
when extending fn to the double of Pn, we are obliged to send both copies
of Pn to the same copy of P;. The hypothesis of the theorem which then
fails is the incompressibility.
Proof. Compactness of pleated surfaces: Consider {Pi} =
{(F1,i,02,4,/i)}. By Corollary 3.1.7 (Set of hyperbolic manifolds compact),
and Corollary 3.1.8 (Compact with bounded volume), we may choose a
subsequence {P;} such that I'y,; converges to I'}, a torsion free discrete
subgroup of Isom(H?2), I’y ; converges to I'y, a torsion free subgroup of
Isom(H 3), and, by Ascoli’s Theorem, f; converges to some continuous map
f:H2 > H3. Let the pleating locus A of f; converge to A. By Theorem
3.1.4 (A(U) compact), H%I'; has area bounded by . It is easy to see that
A is I'y equivariant, and it therefore induces a lamination on a finite area
surface. It follows that A has measure zero. It is easy to see that [ is geo-
desic on each stratum of A.

... 5.2.5. Lemma: Injective homomorphism. The injective homomor-
phisms hj:ly; = I'y,; converge to an injective homomorphism
h:l'y =1y, (possibly after taking a subsequence if I’y does not consist
entirely of orientation preserving isometries ofl'[3}.

Proof. Injective homomorphism: Let S be a complementary region of
the lamination X. Given T €1'|, we let {T; €1',(5)} be a sequence such
that {T;} converges to T. Since f; converges to f and [iTj(z) converges
to fT(z) for each z € H?, hj(Tj) converges on f(S), which is an open
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subset of a hyperbolic plane. But since {h;(T;)} is a sequence of isometries,
it converges to some U € Isom(H?). By Lemma 3.1.3 (Geometric conver-
gence), U € I'y. U will be called £(T). Actually U is only determined if we
know its orientation. So we have to pick a subsequence such that h; T
converges whenever we have a sequence { T} converging to T. It is easy to
check that A is a homomorphism. Furthermore, h is injective, since if
h(T)= h(T’) there would exist two sequences T; and T'; converging to T
and T’ respectively such that h;(7Tj) and h;(T’j) both converge to ~A(T).
But this implies that Aj( T;-"l T j) is equal to the identity for large values of

J- Thenwehave Tj = Tjso T = T'.

Injective homomorphism

Continuation, proof of Compactness of pleated surfaces: To com-
plete the proof of the theorem, we need to check that f is an isometric
map. Before doing this we prove the following technical lemma.

... 5.2.6. Lemma: Technical lemma. Suppose r >0 is given. Then there
ts a number Ky with the following property. Let X,Y,Z,U,V,W be points
in H? such that the distance between any two of them ts at most r. Sup-
pose that we have disjoint geodesics o, B, vy with X,U €, Y,V €8 and
W,Z €. Suppose further that X,Y,Z lie on a geodesic which is orthogo-
nal to a, and that U,V and W are also collinear. (See Figure 5.2.7 .)
Then d(Y,Z) < Krd(V,W).
Proof. Technical lemma: We may regard Y and B as fixed. We assume
the result is false and take a sequence of situations such that
d(Y,Zi)/d(Vi,Wi) is unbounded. By taking subsequences, we assume that
all sequences of points, geodesics or real numbers which occur in the proof
converge (possibly to infinity).

Since d(Y,Zi) < r, d(Vi, W:) tends to zero. Hence vyi converges to 3.
Let Vi converge to V€B. Then d(Y,V)< r. Using hyperbolic tri-
gonometry, it is not difficult to show, using the fact that B and y: are dis-

joint, that

Since yi and a: are disjoint, we have
lcos (¢.X: Zi Wi)| < tanh d(Xi,Zi)
which tends to zero. By the sine rule for hyperbolic triangles,

im Sy _

d(Y,Zi)
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5.2.7 Figure.

Also
. d(Vi,yi)
b2 e v w
It follows that

lim d(Y,Zi) = lim d().’,Z.'.)/d(Y,.y.'). d():::,va.‘)ge,.
P> d(Vi,Wi) i —ed(Vi,Wi)ld(Vi,yi) d(Vi,yi)

But this contradicts our assumption that d(Y,Z:)/d(Vi, Wi) is unbounded.
This proves the lemma. '

Technical lemma

Remark: Recently Thurston has circulated a preprint [Thurstona] in
which the definition of a pleated surface is changed in order to avoid the
necessity for the above technical lemma. In the new definition, a pleated
map sends every geodesic to a rectifiable path of the same length, whereas
in the old definition, every rectifiable path is sent to a rectifiable path of
the same length. Our lemma can be regarded as showing that the new
weaker hypothesis implies the old stronger hypothesis, or that the new
definition is equivalent to the old one.

Continuation, proof of Compactness of pleated surfaces: Let [ be a
geodesic in A. Then there exists /; € A; such that l; converges to [. We
may assume that / and /; are parametrized geodesics. Then l; converges
uniformly to / on compact subintervals of R. Therefore Ji°l; converges
uniformly to fo/ on compact subintervals of #. Therefore fol:R - H3is
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an isometry. Notice that f is lipschitz. In fact d(fz,fy) < d(z,y) for all
z,y €H2

.. 5.2.8. Lemma: Isometric map. Let A € GL(H?) have measure zero,
and suppose that f :H2 = H3 s lipschitz with lipschilz constant less than

1, and is an isometry on each stratum of \. Then [ is an isometric map.

Proof. Isometric map: Let p:[0,L] »H? be a rectifiable path
parametrized proportional to arc length and choose €>0. Since
p~Y(H2AA\)C[0,1), it is composed of a countable union of open intervals
which we call the complementary intervals. Note that the sum of the

lengths of the complementary intervals may be less than L. Pick a finite
number of these intervals, J, , ..., Jr, such that the total length of the

remaining intervals is less than €. Given any partition of [0,1] we enlarge it
so that
1) every endpointof J,, ..., Jrisin the partition. and
2) if a point of the partition lies in a complementary interval, then the
endpoints of the interval are in the partition.
Now take an open interval (tj,tj+ 1) of the partition which meets A and let
the total length of the complementary intervals contained within (¢;,¢;, 1)
be €;. Then Zej < €. Let C = p(t;) and B = p(t;;). By our choice of
partition, B,C €\. Let C lie on the geodesic ¢ € A. Let A be the intersec-
tion of ¢ with the geodesic orthogonal to ¢ through B. See Figure 5.2.9 .
Let {(ai, bi)} be the set of complementary intervals of [4,B]\A. Since
A\ has measure zero, 2 d(ai,b:) is equal to d(4,B). Let g i be the geodesic of
A containing ai and ¢V the geodesic of A containing bi. Let i be the
greatest length of any subpath of pl[tj,th 1) connecting gi to gi. By
Lemma 5.2.6 (Technical lemma), there is a constant K = K|, such that

d(4,B)= (a:,b.)gK { Of §K€J

Since f is lipschitz with constant not greater than one,
d(f(A),f(B)) < d(A,B). By the triangle inequality

ld((A),/(C)) = d(F(B)LS(O)l < d(f(A).S(B)) < Kej.
Also by the triangle inequality we obtain
ld(A,C) - d(B,C)| < d(A,B) < KE;.

Since f is an isometry on each stratum and both A and C lie on g,
d(f(A)f(C)) = d(A C). So we may combine the two inequalities above
to obtain
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5.2.9 Figure.

ld(/(B),/(C)) - d(B,C)| < 2Ke;.
Also note that on each of the intervals (tj,tj4+1) of the partition, whose
interiors do not meet X\, d(fp(tj),fp(tjﬂ)) = d(p(t),p(t;+,)) since f isan
isometry on each stratum.

We have thus proved that, given any partition 0 = 0<..<th =1
of [0,L] and any € >0, then (after possibly refining the partition)

PZ AU BENS(p(t540) = "Zod(p(t)p (¢ 1) < 2KZej < 2Ke

This shows that fop is a rectifiable path with the same length as p, com-
pleting the proof.

Isometric map

This completes the proof of the theorem
Compactness of pleated surfaces

We can now deduce various consequences of Theorem 5.2.2 (Com-
pactness of pleated surfaces).

In the first version let PS8B(A e) (Pleated Surfaces with &asepoint)
be the set of quintuplets (S,p.M,q.f), where S is a hyperbolic manifold of
dimension two with basepoint p, M is a hyperbolic manifold of dimension
three with basepoint ¢, and f:S,p > M,q is a pleated surface, with
Area(S) < A and injgM > . .

We topologize P.S&(A ,e) as a quotient of PSI(A \€).
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5.2.10. Corollary: PSB compact. [’S8(A ) 1s compacl.

This follows since PS8B(A ,€) is a quotient of PSI(A ,e) .

Let K be a compact subset of a fixed complete hyperbolic three-
manifold N. Let PS(A,K,N) be the space of pleated surfaces f:5 — N,
without basepoint, such that KN fS 5= J and with Area(S) < A. We give
this space the quotient topology from the space of pleated surfaces with
basepoint f:S,p — N,q, where ¢ € K. The topology can be defined
directly. Given k>1, € >0 and a compact subset A’y of S, a neighbour-
hood of f:S — N consists of all pleated surfaces f':S§" — N such that
there is a k-approximate isometry ¢ between A; and a compact subset
K{CS', such that d(fz,f '>d(z)) < € for all z €K ;. The details of checking
that this is a correct description of the quotient topology is left to the
reader.

5.2.11. Corollary: Unmarked pleated surfaces compact. Let K be a
compact subset of a fized hyperbolic three-manifold N. Let A > 0. Then
PS(A,K,N), the set of pleated surfaces without basepoint which meet K, s
compact.

Proof. Let 8 <injg(N). The space of all orthonormal frames over K
forms a compact space K;. There is a continuous map from K, into the
space of discrete subgroups of Isom(H3), defined by lifting a frame to the
standard frame in H3 and taking the corresponding group of covering
translations. This map is clearly continuous. It follows that the relevant
set of triples (1,15, f) is a closed subset of PS(A,3) and is therefore com-

pact.
J

If we wish to consider only a single homeomorphism type of surface,
we have to introduce a condition which will prevent a simple closed geo-
desic pinching down into two cusps. Since a pleated surface is isometric, it
will automatically map cusps of S to cusps of N. This condition means
that parabolic elements of ;S map to parabolic elements of w N, but
another condition is also needed. This condition is that hyperbolic ele-
ments in (S map to hyperbolic elements in w V.

5.2.12 Definition. We say a homotopically incompressiblemap f : § = N

is non-parabolic, (abbreviated to np) if the induced map
[«:7(S) = mw(N) is injective and takes hyperbolic elements to hyperbolic

elements and parabolic elements to parabolic elements.
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5.2.13. Corollary: Compactness of pleated surfaces of fixed topolog-
ical type. Let T be a fized topological surface of finite type and N a fized
complete hyperbolic three-manifold. Let KCN be a fized compact subset.
Then P.S'(“’)( T,K,N) the space of non-parabolic pleated surfaces of finite
area without basepoint f:S — N which meet K , and such that S
homeomorphic to T, is compact.

Proof. Since pS(")(T K ,N)CPS(A,K,N ) (where A =area(T)) which is
compact, we need only prove that PS("?}( T K N )is closed in PS(A,K,N).
Suppose {[fi:5i > N)}cpsi»)T K, N) converges to
[f:§ - N] €PS(A,K,N). We need only prove that S has the same (np)-
topological type as Si. We do this by proving that, for some a>0, no
closed geodesic in Si has length less than « and then applying Proposition
3.2.13 (Mumford’s Lemma) to obtain our result.

We define the 8-length of a path v, I3(y) in Si to be I(yNS[5 x))-
Correspondingly, we define 8-distance and the d-diameter of a compact
subset of the surface. Clearly, the d-diameter of Si is less than

X €
4area(Si) =ﬁ8f1=38_ Choose 8<min(—2(-)-,minz(K(inj(:r))) where € is the

Margulis constant. Then since loxodromic components of N5 ) are
separated by a 8-distance of at least cosh—1 [ %?ig_l_J, the set K5 of all

points of 8-distance less than or equal to Bs from K , contains only finitely
many such components. Thus K35 contains no closed geodesics of length
less than a for some a >0. But f(S5:)CKs, since f decreases d-distance,

completing our proof. D

We now prove the compactness of the space of marked pleated sur-
faces, under appropriate conditions.
5.2.14 Definition. A marked pleated surface is a pair ([k],f), where
h:T — S is a homeomorphism from a topological surface T to a complete
hyperbolic 2-manifold S of finite area; [h] is the isotopy class of h; and
J:§ = Nis a pleated map

More directly, the pair (h;,f ) is equivalent to the pair (hy, f5) (where
hi:T — Si are homeomorphisms and Ji:5i &= N are pleated surfaces) if
there is an isometry ¢: 5, — 59 such that the left hand side of the diagram
in 5.2.15 commutes up to isotopy and the right hand side commutes pre-
cisely.

Our discussion of pleated surfaces will relate to a fixed choice of T
and N. We shall denote the space of Marked Pleated Surfaces by
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mpsS(T,N).

The space of marked pleated surfaces is topologized by saying that
([hg]: T — S9,f2:S9 = N) is near to ([h(|: T = S;,f:S9 = N) if [ho] is
near to [h;] in T(T) and there exist representatives hj and h5 such that
f1°hy and fgohy are nearby in C(T.N) in the compact-open topology.
Thus we may consider MPS(T ,N)CT(T)x C(T,N) where C(T,N) is the
quotient space of C(T,N) induced by the equivalence relation of pre-
composition by homeomorphisms of 7' isotopic to the identity. Note that
this is really only a condition on the thick part of S; and S,, because the
values of a pleated surface map on a cusp are determined by its values on

the boundary of the thick part.

5.2.16. Lemma: Marked pleated surfaces Hausdorff. The space of
marked pleated surfaces s Hausdor ff and has a countable basis.

Proof. Suppose
h f h f2
T—l*Sl — M and T—iSQ—N‘\I

do not have disjoint neighbourhoods in MPS. Then h; and h, must
represent the same element of Teichmiiller space. This means that we can
take the hyperbolic surfaces $;=5,=S5. We may also take A to be the
identity, and then k = h, is isotopic to the identity.

Let L and Ly be the pleating loci of f| and f, respectively. We
claim that L ;=L,. For suppose [ is a parametrized geodesic in L;. By our
hypothesis, we may assume that fsh is arbitrarily cloge to f, in the com-
pact opeq topology, if we change h by an_jsotopy. Let_{ be a lift of / to H2.
Then f/ is a geodesic in H3. Now f4h(!) is close to £/, and. by changing
h by an isotopy, we can make it arbitrarily close to f ! as a parametrized
path. Since [g is an isometric map, h! is close to some parametrized geo-
desic. Since hl has the same_eadpoints as [, hl is close to the parametrized
geodesic /. It follows that f5! is equal to the parametrized geodesic f 1!,
except for a change of origin. Hence [ is in the pleating locus of f,. This
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means we have proved that L= L,.

But now f 1 and [, agree on the boundary of each complementary
piece of the lamination (or, more precisely, their images agree). It follows
that f,=f4. This completes the proof that the space of measured lamina-

tions is Hausdorff.
MPS(T,N) has a countable basis since both T(T) and C(T,N) do.

Suppose M — S! is a fibre bundle and M has a complete hyperbolic
structure of finite volume. We know that such structures exist, firstly by
the work of Jprgensen [J\*orgensen, 1977] in special cases, and later, in
great generality, by Thurston [Thurstonb]. The fibre is a surface, denoted
by S. The monodromy ¢:S — S has infinite order in the mapping class
group. We shall see later 5.3.6 (Finite laminations realizable) that the fibre
can be represented by a pleated surface.

Since the monodromy has infinite order, we get an infinite sequence of
homotopic marked pleated surfaces with no convergent subsequence. In
fact there is not even a convergent subsequence in Teichmiiller space.
However, up to finite coverings, this is the only way in which the compact-
ness of the space of homotopic marked pleated surfaces fails, as we now

proceed to prove.

5.2.17 Definition. Let f : § = N be a map between manifolds. Wesay f
is a virtual fibre of a fibre bundle over N, if N has a finite cover N which is
a fibre bundle over the circle, and f lifts to a map into N which is homoto-

pic to the inclusion of the fibre.

5.2.18. Theorem: Compactness of marked pleated surfaces. Let N be
a complete hyperbolic 3-manifold, and let K be a compact subspace of N.
Let T be a topological surface of finite type. Then MP.S'"P(N, T,K)(,‘,,,'),
the space of marked np -pleated surfaces (h: T = §,f : S — N) meeting K
such that foh is homotopic to foh (by a cusp-preserving homotopy) is com-
pact, unless foh is the virtual fibre of a fibre bundle over N.

Proof. Compactness of marked pleated surfaces: Suppose (hi,fi) is a
sequence of homotopic marked pleated surfaces meeting K, with no con-
vergent subsequence. We may assume that fi:Si = N converges in the
space of unmarked pleated surfaces, to a pleated surface f:S = N where
S is homeomorphic to T. Let ¢i:S — Si be an approximate isometry,
which is an isometry on cusps, such that fidi approximates f. Let LCS
be the complement of the cusps. Since L is compact, the injectivity radius
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is bounded below on a neighbourhood of L. Therefore fidi is homotopic to
/ by a linear homotopy along shortest geodesics on L and this homotopy
extends in a unique standard way to a cusp preserving homotopy on all of
S. Suppose there are only finitely many distinct homotopy classes among
the maps {¢;71hi: T — S}. In this casc we may suppose that this homo-
topy class is constant and is represented by h: T — S. Now fidi is
approximately equal to f. Therefore fh = f¢; 1hi = fihi. It follows that
(f,h) is the limit of the sequence {(fi,hi)}. This is a contradiction.

It follows that there are infinitely many distinct homotopy classes
{b;7hi: T — S}.

. 5.2.19. Lemnma: Torsion free kernel. Let A be a free abelian group of
finite rank, and let n >2 be an integer. Then the kernel of
AutA — Aut(AQ®Z n) contains no elements of finite order.

Proof. Torsion free kernel: Suppose g: A — A is an automorphism of
finite order which induces the identity on A®Z . By averaging, we con-
struct a g-invariant bilinear positive definite inner product on A. Let N be
the set of nearest elements to 0. This is a finite set (as we see by comparing
with the associated positive definite g-invariant inner product on the asso-
ciated vector space AQR), and it is g-invariant. If z; and z, are distinct
elements of N, then z; and z, are distinct modulo n (for otherwise one of
the n —1 intermediate points of A would be non-zero and nearer to 0).

It follows that ¢ is fixed on N. Let B be the subgroup of A generated
by N, and let
C ={r €A kx €Bforsomek = 0} .
Then ¢ is fixed on B and hence fixed on C. Now A/C is a free abelian
group of smaller rank than A, and ¢ induces an automorphism of finite
order on A/C, which becomes the identity on (A4/C)®Zn. It follows by

induction that this automorphism is the identity on {A/C). Taking a basis
for C and extending to a basis of A, we see that ¢ has matrix

[

and, since ¢ has finite order, X = 0.

Torsion free kernel
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. 5.2.20. Lemma: Non-trivial on homology. Let T be a surface of
finite type and let x(T) < 0. Letg: T = T have finite order in the map-
ping class group, and suppose g * id. Then the induced map on I,(T:R)
1s non-irivial.

- The following proof was explained to us by Peter Scott.

Proof. Non-trivial on homology: Let n > 0 be the order of g. We may
suppose that n is prime. According to [Kerckhof, 1983] (in fact this was
known earlier), we may impose on T a hy perbolic structure preserved by
an isometry ¢ of finite order. Let @ = T/g. Then Q is an orbifold. A
component of the singular set of Q is either a point or a circle. (The latter
case happens if ¢ fixes a circle and interchanges the two sides of the circle.)
Let E be the group which is the finite extension of 7T by g. Then E is
the fundamental group of the orbifold @. It can be computed from van
Kampen’s Theorem, where the pieces to be glued together are nice neigh-
bourhoods of the components of the singular set and @, the complement
of these neighbourhoods. It is easy to see that
H\(T;R)

Hy(lQ;R) = TE%®R = oS

by applying the Mayer-Vietoris Theorem to the same pieces of |Q|. There-
fore g induces a non-trivial map on H{(T;R)if and only if Hy(IQI;R) has
smaller dimension than H,(T;R). -

Suppose, for a contradiction, that these two dimensions are equal and
denote the common value by r. Since X(T) < 0. we must have r > 2. Let
@ have ¢ singular points, and let the inverse image of Qg in T be T.
Amongst the boundary components of Ty, suppose g, of these bound disks

in T. Then ¢; < ng. We have
nx|Ql = nxQq+ng = xTo+ng > xTy+q, = xT .

If ,Ql i1s not a closed orientable surface, then x|Q| = —r+1, so that
n(r-1)= —nxlQl < —XT = r—1. Therefore n < 1, a contradiction. If
Q] is a  closed orientable  surface, then r >4 and

n(r-2)=-nxlQl< —-xT < r-1, so that n <(r—1)(r-2)< 3/2.
Therefore n = 1, again a contradiction.

Non-trivial on homology

The following is a well-known result, which we do not in fact use in
the sequel, but which is included for its general interest.
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.. 5.2.21. Corollary: Finite order implies G finite. If G 13 a subgroup
of the mapping class group such that every element has finite order, then G
18 finite.

Proof. Finite order implies G finite: Let A be the quotient of H,(T;Z)
by its torsion subgroup. The map G — AutA is injective by Lemma
(Non-trivial on homology). The composite G — AutA — Aut(AQ®Z3) is
injective by Lemma 5.2.19 (Torsion free kernel). Therefore G is finite.
Finite order implies G finite

Continuation, proof of Compactness of marked pleated surfaces:
There must exist r # s such that hl'lcblcb,"lhr and k| Lé b Lhs have the
same image in Aut(H,(T;Z3)). Then h;!$rd;ths is trivial in
Aut(H,(T;Z3)) and therefore is of infinite order in the mapping class
group. Now hr, ¢r, &s, hs can all be assumed to be standard on the cusps.
So we can remove the cusps from T to obtain a manifold T, with boundary
and ¢ = h; lbrd; Lhs is a homeomorphism of Tj.

Let M be the mapping torus of ¢s. We shall define F: M — N. We
have already seen that fs¢s = frébr by a cusp preserving homotopy.
Therefore frhry = frdrd;1hs = fshs by a cusp preserving homotopy.
We can use this to construct a map of M into N. Note that the boundary
components of M (all of which are tori or Klein bottles) are sent to cusps of
N.

Now F«:mw;M — 7N is injective. To see this note that 7, M is the
extension of ;T by Z. Let a be the generator of Z, and suppose that
F.(ya®)is trivial in 7w, N for some y € w;T. Then (F.«a)" lies in the image
of w; T. This means n = 0 or that conjugation by F.« has finite order in
the outer automorphism group of 7, T. But the effect of this conjugation is
equal to ¢» which has infinite order. Therefore n=0. Since the pleated
surface is mcompreasnble vy is trivial.

Let N be the covering space of N such that the lift F M —'N
induces an isomorphism of fundamental groups.

First we dispose of the case where M is a closed manifold. Since the
higher homotopy groups of M and N are zero, we know that M and N are
homotopy equivalent. Hence N is also a closed manifold. From a result of
Stallings [Hempel, 1976, Theorem 11.6] we deduce that M is homeomorphic
to N.

From now on we assume that M has a non-empty boundary. We
remove from N uniform horoballs to make a manifold with boundary,
which, by abuse of notation, we continue to denote by N. and we have



Notes on notes of Thurston 77

F:M,0M — N,ON. A boundary component of M has fundamental group
which js maximal solvable in ;M. Therefore its image is maximal solvable
in wyN. Therefore each component of d NV in the image of oM is a torus or
a Klein bottle and the map has degree one on each component of M. Since
fundamental groups of different components of dM are not conjugate in
w1 M, these components are mapped to distinct components of dN. Now

consider the following diagram
Hy(M,0M;Z,5) — Hy(N,0N;Z,)

! |
H2(8Af;z:3) - H2((3N;ZQ)

The map on H) is injective, and so is a: Hy(M,0M;Z,) = Hy(OM;Z ,)
(assuming for the moment that oM = )._.Hence F. is injective on H; It
follows thgt Hy(N,0N;Z,) = Z,. Hence N is a compact manifold and the
covering N => N is finite sheeted. It also follows that each boundary com-
ponent of N iiin the image of oM.

M and N are clearly sufficiently large, since they have non-empty
boundary. Therefore a result of Waldhausen [Hempel, 1976, Theorem 13.7]
can be applied. The twisted /-bundle situation described in the statement
of that theorem is ruled out, since there is a bijection between the set of
boundary components in our cage, but not in the /-bundle situation. Once
again, M is homeomorphic to N (with the cusps removed). The theorem

follows.

Compactness of marked pleated surfaces

5.3. Realizations

See Section 8.10 of [T].

Given a pleated surface, we have its pleating locus. Rather surpris-
ingly, it is often possible to reverse the direction of this construction. We
shall show how, given a topological surface T of finite type, a homotopy
class of maps f/ : T — N into a complete hyperbolic 3-manifold, and a max-
imal lamination X of T, there often exists a complete hyperbolic structure
on T and a pleated map f: T — N in the homotopy class, whose pleating

locus is contained in A\.
First we make a definition
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5.3.1 Definition. Let f : S — N be a pleated surface and let a be a finite
geodesic arc in S. We define a non-negative real number which we call the
pleating of a as follows. We lift a to a in H3 The pleating is the
difference of the distance between the endpoints of a in H? and the length

of a.
If a has zero pleating, then it must lie in a single stratum of the pleating
locus (except possibly for its endpoints).

We now prove that the pleating locus is a continuous function of the

pleated surface.

Let N be a fixed complete hyperbolic 3-manifold. For each marked
pleated surface (h: T — S, f : S — N) the pleating locus of f is a geodesic
lamination on S. By fixing a complete hyperbolic structure on T we obtain
a geodesic lamination on T. (See 4.1.4 (Transferring laminations).)

5.3.2. Lemma: Pleating locus continuous. The 1ap
nmpS(T,N) —>g’.l‘( ) is continuous if we use the Thurston topology on

gL(T).

5.3.3 Remark. If we use the Chabauty topology on §£(T), the map is
not continuous. For example, we can take a Fuchsian group with empty
pleating locus and approximate it by a quasifuchsian group with any preas-
signed lamination of compact support as its pleating locus. ‘

Proof. Let (hi: T — Si, fi:Si = N) converge to (h,f). Let ¢i:§ — Si
be an approximate isometry such that fidi is approximately equal to f
and hi is homotopic to hd. We may assume that h and hi are standard on
the cusps and that ¢: is an isometry on the cusps. There is no loss of gen-
erality in taking T = S, A = id, and hi = ¢i. Let A\ and A be the pleating
loci of f and fi. Let a be a geodesic in H?in the lamination A. We must
show that there is a geodesic ai in A\; such that d), lai has endpoints near

to those of a.

. By choosing appropriate coverings and lifts, we may assume that
{fi :H? = H3} converges uniformly to f :H2 — H?3 op compact sets. Let
B be a short arc crossing a. Then the pleating of (8,/) is non-zero. It fol-
lows that the pleating of (B, /i) is_non-zero for sufficiently large . There-
fore there exists a geodesic ai € Ai which crosses B. We claim that {o:}
converges to a. For suppose not. Then by choosing a subsequence, we may
assume {ai} converges to ax #* a. Therefore ax intersects a at a point z.
But, by uniform convergence, flax must be an isometry, and this would
imply that z is not in the pleating locus of f, which is a contradiction.
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5.3.4 Definition. Suppose \ is a lamination on a complete hyperbolic sur-
face T, and that f: T — N is a given np incompressible surface. We say
(N,f) is realszable and write \ € R if there is a map /' homotopic to f, by
a cusp preserving homotopy which maps each geodesic of A homeomorphi-
cally to a geodesic of N.

We do not require f’ to preserve arclength (not even up to change of
scale) on the geodesics of A. Nor do we require the image of a geodesic of A
under f’ to be a simple geodesic in N. It follows that the question of
whether a lamination is realizable or not does not depend on the underlying
hyperbolic structure of the surface. By an easily constructed homotopy, we
may assume that every realization / is isometric on each geodesic ray of S,
which lies in a cusp of S and travels straight towards the cusp point. We
may also assume that f sends every horocyclic curve in a cusp of S to a
piecewise linear curve in a horosphere of NV (using the euclidean metric in a
horosphere of N to give the meaning of “*piecewise linear”). The map f is
linear on each horocyclic interval disjoint from X\.

5.3.5. Lemma: Image well-defined. If (\.f) is realizable, then the tmage
of X in N under a realization is well-defined.

Proof. Image well-defined: _More precisely, we can [jft any twq realiza-
tions fy,f to two maps f,,fo:H2 —> H3 such that f1(a) and fo(a) are
equal as directed geodesics in H? (though the parametrizations induced by
f1and f may be different) for every a € A. To see this, we fix a complete
hyperbolic structure on T. Let A: TxI — N be a cusp-preserving homo-
topy between f; and f.. We adjust &, f1and f4sothat on each cusp they
are “linear”, i.e. isometric on each geodesic straight up the cusp and horo-
cyclic intervals disjoint from A are sent linearly to straight lines in a horo-
sphere of N. The thick part of T is compact. It follows that by lifting A to
h:I1xH? > H3 we obtain a homotopy such that the distance in H? from
ho(z) to hy(z) is bounded as z € H?2 varies. But then kg and h; have the
same effect on endpoints of geodesics of A.

Image well-defined

We spend the rest of this section proving that if f preserves paraboli-
city, then R, is open and dense. The proof is by a series of lemmas

5.3.6. Theorem: Finite laminations realizable. Any finite lamination
1s realizable. If u is a geodesic lamination which is realizable and \ is any
finite extensson of ., then \ is also realizable.
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Proof. Finite laminations realizable: We first do the case when A\ is
finite (i.e. w = &) first. Start by arranging for f to be a geodesic immer-
sion on each cusp of T. Each simple closed geodesic in \ is sent to a well-
defined conjugacy class in 7y N and hence to a well-defined closed geodesic.
Fix a map on such simple geodesics which is parametrized proportional to
arclength. By the Homotopy Extension Theorem we change f so that it is
such a map on the closed geodesics of \. Welift f to f :H® — H3. Now f
realizes the sublamination p of A consisting of closed geodesics. Therefore
f defines a map on the endpoints of geodesics of . [ also gives a map on
the endpoints of geodesics of A which run up cusps of T. If o is any geo-
desic of A, then each end either spirals onto a geodesic in u or ends in a
cusp. Therefore we know where the endpoints of « should be mapped to.
This determines the image of a under the realization.

Now |A| is not a nice subspace of T and the Homotopy Extension
Theorem cannot be applied to it, so we need to define the realization on a
subspace which contains IN| and to which the Homotopy Extension
Theorem can be applied.

Let N be the set of points z in T such that there are distinct homo-
topy classes of paths of length less than €, with one endpoint at z and the
other on A There is a canonical foliation of N (see [Epstein-Marden]). We
map each leaf of this foliation to the appropriate horocyclic curve in N, by
a map which is proportional to arclength on each horocyclic interval com-
plementary to \. It is easy to see that this gives a definite map on N. We
now extend to the rest of [\| and then use the Homotopy Extension
Theorem to extend to therest of T.

The same method is used to extend a realization from any geodesic
lamination p to a finite extension A of p. The only point we need to check
on is that, when trying to define the image of a € A\pu. we do not find that
the two putative endpoints of fa are equal in H3. This is clear if p is a
finite lamination, but in general a little work is needed. Let f : T — N bea
realization on . and let f be a lifting of f. Let A be a geodesic lamination
and let o be a geodesic in A with endpoints at the endpoints of p. Let A\p
consist of a finite number of geodesics. We now prove the following lemma.

... 5.3.7. Lemma: Image points not too close. Let f :§ — N be a cusp
preserving tncompressible map which is ‘“linear’’ on the complement of X
in any cusp and let f:H2 = H3 be a fized lifting. Given r.> 0, there
ezists s > O_such that if z,y € H? and d(z,y) > s, thend(fz,fy)>r. In
particular, f 13 proper.
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Proof. Image points not too close: First we show f is proper. Let K be
3 compact subspace of H3. Let >0 be chosen small enough so that
f(m=1Sos) N K = D. Let F CH2 be a fundamental region for S and let
F5 CF be a fundamental region for S[;,,w). Then F3 is compact. Since
)V is a discrete subgroup of Isom(H?3), there are only a finite number of
covering translations T of H3 such that T/FsNK  &. It follows that
S 7K is contained in a finite union of translates of F 8, and is therefore
compact. So f is proper.

Now syppose that zn,yn € H? and d(zn,yn) = ©. We have to show
that d(fzn,fyn) — . We may suppose that z» € F for each n. We may
also suppose that neither zn nor yn converges to the end of a cusp, for the
result is then obvious by our special assumptions on f. Therefore we may
assume that z» converges to a point z € F. The result then follows since f

is proper.

Image points not too close

-« 5.3.8. Lemma: Endpoints not equal. The endpoints of fa are dis-
tinct in H3.

Proof. Endpoints not equal: Suppose that the two endpoints of fa are
equal in H3. Let the two ends of a be asymptotic to the oriented geodesics
a; and ay at the positive ends of ay and ay where ay,ap € u. These ends
are distinct in H2. Therefore, by Lemma 5.3.7 (Image points ngt too
close), fa; and fay are distinct in H3. Therefore the endpoints of fa are

distinct.

Endpoints not equal

This compl_etes the proof of the theorem

Finite laminations realizable

Recall from Theorem 4.2.14 (Finite laminations dense) that finite
laminations are dense in ¢.£(S) in both the Chabauty topology and the

Thurston topology.

5.3.9. Theorem: Existence of realizing structure. Let A\ be a marimal
lamination in S and let [ : S — N be a realization of \. Then there is a
unique hyperbolic structure S’ on S and a pleated surface f':S =N
homotopic to f, with pleating locus conlained in \.
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Proof. Existence of realizing structure: We prove it first for finite lam-
inations. Each ideal triangle in S\\ is mapped by a unique isometry to a
well-defined ideal triangle in V.

Let Sy ,..., S; be the components of the surface obtained by
removing from § all the simple closed geodesics of A\. We get (new) well-
defined incomplete hyperbolic structures on each Si, defined in such a way
that we obtain pleated maps on the completion Si. Si is constructed by
starting with one ideal triangle, gluing on the next in the unique way so
that we get a pleated map into N, and so on. Let a be a simple closed geo-
desic in A. Then o corresponds to exactly two_boundary curves a; and a,
of the Si, and we have to glue oy to ay. Now f: 5 — H3 maps horocycles
centred at one end of ai to horospheres centred at the corresponding end of
fo in H3 and similarly for ag. (Which end depends on the direction of
spiralling of the lamination around «.) Extending by continuity, we get an
isometric map Si = H3. This induces a well-defined isometric map
Si > N. Now «, and ag map isometrically to the same closed geodesic of
N. We identify «, to «g in such a way that we obtain a well-defined

pleated surface f': S’ — N,

For a general maximal lamination, the result follows from the com-
pactness of pleated surfaces. By lifting to a cover, we may assume that
f:§ = N induces an isomorphism of fundamental groups. Let i be a
minimal sublamination of S, and let UCN be a small closed ball meeting
f . By Theorem 4.2.10 (Curve near geodesic) and Theorem 4.2.14 (Finite
laminations dense), we may assume that we have a sequence A: of finite
laminations, converging to A. Since f is uniformly continuous, we may
assume that there is a simple closed geodesic Ci in Ai such that the simple
closed geodesic corresponding to fCi meets U. (See Theorem 4.2.10 (Curve
near geodesic).) Let fi be the unique marked pleated surface with pleating
locus contained in Ai. By Theorem 5.2.18 (Compactness of marked pleated
surfaces), we may assume that fi converges to a pleated surface
[':8" = N(if f is a virtual fibre we must lift to a cover M such that
w1(M)=f«(w(T))), and by Corollary 5.2.13 (Compactness of pleated sur-
faces of fized topological type) S’ is of the same type as S. By Lemma
5.3.2 (Pleating locus continuous), the pleating locus Ag of [ is contained in
A. This shows the existenceof f': S’ — N. To prove the uniqueness of the
pleated surface realizing A, we give a more abstract version of S'. Let
H? > § be the universal cover of §. Welift A to a lamination A ofo. We
identify each geodesic of A to a point and each component of H%\\ to a
point. (Each such component is an open ideal triangle.) The resulting quo-
tient space of H? is called Px. Geodesics of X give closed points of Px and
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triangular strata give rise to open points. P\ is not Hausdorff, because a
point corresponding to a triangle is in every neighbourhood of each of its
three sides. ;S acts on P\ via covering translations of H2.

If §' is a complete hyperbolic surface of finite area and we have a

homeomorphism from S to S’, we obtain a lifted homeomorphism of H?
with itself. This homeomorphism extends to the boundary circle, and is
unaltered by an isotopy of homeomorphisms between S and S'. (The lift
to H2UH? — H2UAH 2 can be changed by composition with an element
of w1 S on the right, or, equivalently, with an element of 7S’ on the left.)
A geodesic is represented by an unordered pair of distinct elements of S’.
A geodesic of S is, in this way, sent to a geodesic of S’ and so A can be
transferred from $ to a lamination A\’ of S’. Since P\ can be defined
entirely in terms of pairs and triples of points in dH?, we see that P is
homeomorphic to Px'.
. Letf:H2>H3bealift of f, a realization of \. Ifa is a geodesic of
A, then fa is a geodesic in H:E, and we write f(a) for this geodesic. If s is a
triangular component of H2\\, then its boundary is mapped to an ideal tri-
angle in H3, which we denote by f(S5).

Now consider the subset A of PAxH?3, consisting of pairs (y,z) such
that z € fy. It is easy to check that A/mS is Hausdorff. Let f':S' —> N
be a marked pleated surface homotopic to f: S — N, with pleating locus
A\’ corresponding to ACS. Then the lift S :H?2 >H3of f’ induces a map
of §’ into A and hence a map S’ — A/wS. Each cusp of S only contains a
finite number of geodesics of A. From this it is easy to see that the map
§’ = A/w\S is a homeomorphism on the cusps. So we can apply the
theorem that a bijective continuous map of a compact space to a Hausdorff
space is a homeomorphism, to deduce that S’ —> A/mS is a homeomor-
phism. Themap f': S’ — N factors as '

S' _’A/’WIS - N

where the second map is induced from the projection A — H3. It follows
that f':S’ — N is unique, up to composition of an isometry of another

complete hyperbolic surface $” with §".

Existence of realizing structure

We have shown that R, is dense (see Theorem 5.3.6 (Finite lamina-
tions realizable)); we now wish to show it is open. We need to make use of
the theory of train tracks. We shall provide a few of the definitions, but
the interested reader is encouraged to seek further detail in [Casson, 1983]

or [Harer-Penner, 1986).
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A train track 7 on a hyperbolic surface S, is a finite graph embedded
in S, such that all edges of the graph are C!-embedded in S, all edges are
tangent at any vertex (these vertices are called switches ), and if you dou-
ble any component of S\t along its (open) edges the resulting surface has
negative Euler characteristic. A train route is a Cl-immersion p:R — 1.
A neighbourhood U of T which is foliated by arcs (called ties) transverse to
1, such that each transverse arc meets 7 in just one point (except near the
switches) is called a standard neighbourhood of 7. A geodesic lamination A
is said to be carried by a train track 7 if there is some standard neighbour-
hood U of 7 such that AC U and each leaf of \ is transverse to every tie. So
every leaf of the lamination is homotopic to an unique train route. (One
way of obtaining such a train track is to take an e-neighbourhood of A, and
“‘squeeze” it down into a train track.) Now, we simply note that the set
N(7) of all laminations carried by a given train track 7, is an open subset of
GL(S) in the Thurston topology, and that every geodesic lamination is car-
ried by some train track.

Suppose A can be realized by a pleated map ¢:5 — N and suppose
that X is carried by a train track T where TC Ne¢(A). We choose 1 so that an
e-neighbourhood of 7 contains A\. By taking € small enough we can ensure
that any train track path can be represented by a sequence of long (i.e of
length greater than some a >0) geodesic arcs, joining each other at angles
almost equal to 7 (we refer to points where these angles occur as bends.)
Notice that all switches are bends, but that we may have to insert some
bends at points which are not switches. Similarly, we may construct a
“train track’ 7’ in N which is “near” to the g(7), in particular the bends of
7' are the images of 7's bends, which also has the above properties. The
image of every train route of 1 is associated to a well-defined geodesic of N,
since if we examine a lift of this train route to H3 it has well defined and
distinct endpoints by Lemma 4.2.10 (Curve near geodesic)

Now suppose A’ is carried by 7, by the above A’ has a well-defined
image in NV which is a collection of geodesics (although it isn’t necessarily a
geodesic lamination as the geodesics may intersect). Now as in Theorem
5.3.9 (Ezistence of realizing structure) we may choose a sequence of finite
laminations Ai converging to A’ and prove the existence of a realizing map
f':§" = N. Hence any lamination carried by 7 is realizable, thus proving
R; is open. We summarize the above results in a theorem.
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5.3.10. Theorem: Realizable laminations open and dense. If f
preserves parabolicity, Ry 1s open and dense.

5.3.11. Theorem: Lamination realizable. Given a surface T, a
geomelrically finite complete hyperbolic 8-manifold N, and f : T — N, an
incompressible map taking cusps to cusps, satisfying np and which is not a
virtual fibre, then every N € C.L(S) may be realized by a pleated surface in
the homotopy class of f (i.e. R;=GL(S)).

Proof. Lamination realizable: First note that if [ realizes A, then
S\ C Cy, the convex core of N. The reason for this is that it is true for
finite laminations by construction, and these are dense. Let K be the thick
part of the convex core of N. Then K is compact (see [| for example) and
every pleated surface meets K. By Theorem 5.2.18 (Compactness of
marked pleated surfaces), the space of marked pleated surfaces is compact.
The set of finite-leaved maximal laminations is dense in the set of maximal
laminations, and every maximal geodesic lamination is realizable by a
pleated surface in the homotopy class of f. Since every geodesic lamina-
tion is contained in a maximal lamination. every geodesic lamination is

realizable. D

As an example of the power of the techniques in the last few sections,
we state a trivial corollary of Corollary 5.2.13 (Compactness of pleated sur-
Jaces of fized topological type) and the realizability of any (np)-surface
subgroup of a hyperbolic 3-manifold by a pleated surface. (Of course, the
main applications of the above material is in Thurston’s proof of his uni-

formization theorem.)

5.3.12. Corollary: Finiteness theorem. Let S be any surface of finite
area and N any geometrically hyperbolic 3-manifold. There are only
finitely many conjugacy classes of subgroups GCmw\(N) isomorphic to
m(S) by an isomorphism which preserves parabolicity.
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