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1 Free groups

1.1 Definitions and notations

Let G be a group. If H is a subgroup of G then we write H ≤ G; if H is
a normal subgroup of G we write H E G. For a subset A ⊆ G by 〈A〉 we
denote the subgroup of G generated by A (the intersection of all subgroups
of G containing A). It is easy to see that

〈A〉 = {aε1
i1

, . . . , aεn
in
| aij ∈ A, εj ∈ {1,−1}, n ∈ N}

To treat expressions like aε1
i1

, . . . , aεn
in

a little bit more formally we need
some terminology.

Let X be an arbitrary set. A word in X is a finite sequence of elements
(perhaps, empty) w which we write as w = y1 . . . yn ( yi ∈ X). The number
n is called the length of the word w, we denote it by |w|. We denote the
empty word by ε and put |ε| = 0.

Consider
X−1 = {x−1|x ∈ X},

where x−1 is just a formal expression obtained from x and −1. If x ∈ X then
the symbols x and x−1 are called literals in X. Denote by

X±1 = X ∪X−1
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the set of all literals in X. For a literal y ∈ X±1 we define y−1 as

y−1 =

{
x−1, if y = x ∈ X;
x, if y = x−1 ∈ X.

An expression of the type

w = xε1
i1
· · · xεn

in
(xij ∈ X, εj ∈ {1,−1}), (1)

is called a group word in X. So a group word in X is just a word in the
alphabet X±1.

A group word
w = y1 . . . yn, (yi ∈ X±1)

is reduced if for any i = i, . . . , n − 1 yi 6= y−1
i+1, i.e., w does not contain a

subword of the type yy−1 for a literal y ∈ X±1. We assume also that the
empty word is reduced.

If X ⊆ G then every group word w = xε1
i1
· · ·xεn

in
in X determines a unique

element from G which is equal to the product xε1
i1
· · · xεn

in
of the elements

x
εj

ij
∈ G.
In particular, the empty word ε determines the identity 1 of G.

Definition 1 A group G is called a free group if there exists a generating
set X of G such that every non-empty reduced group word in X defines a
non-trivial element of G.

In this event X is called a free basis of G and G is called free on X or
freely generated by X. It follows from the definition that every element of a
free group on X can be defined by a reduced group word on X. Moreover,
different reduced words on X define different elements in G. We will say
more about this in the next section.

1.2 Construction of a free group with basis X

Let X be an arbitrary set. In this section we construct the canonical free
group with basis X. To this end we need to describe a reduction process
which allows one to obtain a reduced word from an arbitrary word.

An elementary reduction of a group word w consists of deleting a subword
of the type yy−1 (y ∈ X±1) from w.

For example, suppose w = uyy−1v for some words u, v in X±1. Then the
elementary reduction of w with respect to the given subword yy−1 results in
the word uv. In this event we write

uyy−1v → uv.
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A reduction of w ( or a reduction process starting at w) consists of con-
sequent applications of elementary reductions starting at w and ending at a
reduced word:

w → w1 → · · · → wn, (wn is reduced).

The word wn is termed a reduced form of w.
In general, there may be different possible reductions of w. Nevertheless,

it turns out that all possible reductions of w end up with the same reduced
form. To see this we need the following lemma.

Lemma 1 For any two elementary reductions w → w1 and w → w2 of a
group word w in X there exist elementary reductions w1 → w0 and w2 → w0,
so the following diagram commutes:

�

� � � �

� �

Proof Let w
λ1→ w1, and w

λ2→ w2 be elementary reductions of a word w. There
are two possible ways to carry out the reductions λ1 and λ2.

Case a) (disjoint reductions). In this case

w = u1y1y
−1
1 u2y2y

−1
2 u3, (yi ∈ X±1)

and λi deletes the subword yiy
−1
i , i = 1, 2. Then

w
λ1→ u1u2y2y

−1
2 u3

λ2→ u1u2u3

w
λ2→ u1y1y

−1
1 u2u3

λ1→ u1u2u3.

Hence the lemma holds.
Case b) (overlapping reductions). In this case y1 = y2 and w takes on the

following form
w = u1yy−1yu2.
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Then
w = u1y(y−1y)u2

λ2→ u1yu2,

w = u1(yy−1)yu2
λ1→ u1yu2;

and the lemma holds.
¤

Proposition 1 Let w be a group word in X. Then any two reductions of w:

w → w′
1 → · · · → w′

n

w → w′′
1 → · · · → w′′

m

result in the same reduced form, i. e. , w′
n = w′′

m.

Proof. Induction on |w|. If |w| = 0 then w is reduced and there is nothing
to prove. Let now |w| ≥ 1 and

w → w′
1 → · · · → w′

n

w → w′′
1 → · · ·w′′

m

be two reductions of w. Then by Lemma 1 there are elementary reductions
w′

1 → w0 and w′′
1 → w0. Consider a reduction process for w0 :

w0 → w1 → · · · → wk.

This corresponds to the following diagram:
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W

W"
2

W
0

W"
m

W
k

W'
n

W'
1

By induction all reduced forms of the word w′
1 are equal to each other, as

well as all reduced forms of w′′
1 . Since wk is a reduced form of both w′

1 and
w′′

1 , then w′
n = wk = w′′

m as desired. This proves the proposition.
¤

For a group word w by w we denote the unique reduced form of w.
Let F (X) be the set of all reduced words in X±1. For u, v ∈ F (X) we

define multiplication u · v as follows:

u · v = uv.

Theorem 1 The set F (x) forms a group with respect to the multiplication
·. This group is free on X.

Proof. The multiplication defined above is associative:

(u · v) · w = u · (v · w)

for any u, v, w ∈ F (X). To see this it suffices to prove that

(uv)w = u(vw)

for given u, v, w. Observe, that each of the reduced words (uv)w, u(vw) can
be obtained form the word uvw by a sequence of elementary reductions,
hence by Proposition 1

uvw = uvw = uvw.
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Clearly, the empty word ε is the identity in F (X) with respect to the multi-
plication above, i.e.,

ε · w = w · ε
for every w ∈ F (X). For this reason we usually denote ε by 1.

Let w = y1 · · · yn, yi ∈ X±1. Then the word

w−1 = y−1
n · · · y−1

1

is also reduced and

w · w−1 = y1 · · · yny−1
n · · · y−1

1 = 1.

Hence w−1 is the inverse of w. This shows that F (X) satisfies all the axioms
of a group.

Notice that X is a generating set of F (X) and every non-empty reduced
word

w = xε1
i1
· · · xεn

in

in X±1 defines a non-trivial element in F (X) (the word w itself). Hence X
is a free basis of F (X), so that F (X) is free on X.

¤
Digression. The reduction process above is a particular instance of a

rewriting system in action. Now we pause for a while to discuss rewriting
systems in general.

the discussion follows

1.3 The universal property of free groups.

Theorem 2 Let G be a group with a generating set X ⊆ G. Then G is free
on X if and only if the following universal property holds: every map ϕ :
X → H from X into a group H can be extended to a unique homomorphism
ϕ∗ : G → H, so that the diagram below commutes

X G

H

-i

@
@

@@R

φ

ppppppp?
φ∗

(here X
i−→ G is the inclusion of X into G).
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Proof. Let G be a free group freely generated by X and ϕ : X → H a map
from X into a group H. Since G is free on X then every element g ∈ G is
defined by a unique reduced word in X±1,

g = xε1
i1
· · · xεn

in
, (xij ∈ X, εi ∈ {1,−1}).

Put
gϕ∗ = (xϕ

i1
)ε1 . . . (xϕ

in
)εn
in

. (2)

We claim that ϕ∗ is a homomorphism. Indeed, let g, h ∈ G and

g = y1 · · · ynz1 · · · zm,

h = z−1
m · · · z−1

1 yn+1 · · · yk,

are the corresponding reduced words in X±1, where yi, zj ∈ X±1 and yn 6=
y−1

n+1 ( we allow the subwords y1 · · · yn, z1 · · · zm, and yn+1 · · · yk to be empty).
Then

gh = y1 · · · ynyn+1 · · · yk

is a reduced word in X±1 presenting gh. Now

(gh)ϕ∗ = yϕ∗
1 . . . yϕ∗

n yϕ∗
n+1 . . . yϕ∗

n =

= yϕ∗
1 . . . yϕ∗

n zϕ∗
1 . . . zϕ∗

m (zϕ∗
m )−1 . . . (zϕ∗

1 )−1 . . . yϕ∗
n+1 . . . yϕ∗

k = gϕ∗hϕ∗ .

Hence ϕ∗ is a homomorphism.
Clearly, ϕ∗ extends ϕ and the corresponding diagram commutes. Observe

that any homomorphism ϕ∗ : G → H, that makes the diagram commutative,
must satisfy the equalities 2, so ϕ∗ is unique. This shows that G satisfies the
required universal property.

Suppose now that a group G with a generating set X satisfies the universal
property. Take H = F (X) and define a map ϕ : X → H by xϕ = x, (x ∈
X). Then by the universal property ϕ extends to a unique homomorphism
ϕ∗ : G → F (X).

Let w be a non-empty reduced group word on X. Then w defines an
element g in G for which gϕ∗ = w ∈ F (X). Hence gϕ∗ 6= 1 and consequently
g 6= 1 in G. This shows that G is a free group on X. This proves the theorem.

¤
Observe, that the argument above implies the following result, which we

state as a corollary.

Corollary 1 Let G be a free group on X. Then the identical map X → X
extends to an isomorphism G → F (X).
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This corollary allows us to identify a free group freely generated by X with
the group F (X). In what follows we usually refer to the group F (X) as to a
free group on X.

Digression. Defining various free objects (groups, rings, etc.) via their
universal properties is a standard way to define universal objects in category
theory.

the discussion follows

References: see any book on category theory, for example:
S. MacLane Categories for the Working Mathematician, 1972,
S. MacLane Homology, Springer, 1967.

1.4 Presentations of groups

The universal property of free groups allows one to describe arbitrary groups
in terms of generators and relators.

Let G be a group with a generating set X. By the universal property of
free groups there exists a homomorphism ψ : F (X) → G such that ψ(x) = x
for x ∈ X. It follows that ψ is onto, so by the first isomorphism theorem

G ' F (X)/ ker(ψ).

In this event ker(ψ) is viewed as the set of relators of G, and a group word
w ∈ ker(ψ) is called a relator of G in generators X. If a subset R ⊆ ker(ψ)
generates ker(ψ) as a normal subgroup of F (X) then it is termed a set of
defining relations of G relative to X. The pair 〈X | R〉 is called a presen-
tation of G, it determines G uniquely up to isomorphism. The presentation
〈X | R〉 is finite if both sets X and R are finite. A group is finitely presented
if it has at least one finite presentation. Presentations provide a universal
method to describe groups. In particular, finitely presented groups admit
finite descriptions. How easy is to work with groups given by finite presen-
tations - is another matter. The whole spectrum of algorithmic problems in
combinatorial group theory arose as an attempt to answer this question. We
will discuss this in due course.

Digression. Presentations of groups lie in the heart of combinatorial
group theory. They are the source of many great achievements and big
disappointments. We are not going to mention relevant results here. Instead,
we refer to few books on the subject.

References:

Magnus W., Karrass A., Solitar D. Combinatorial group theory, New
York, Wiley, 1966.
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Johnson , Presentations of groups,

More advanced:

Lyndon R., Schupp P. Combinatorial Group Theory, Springer, 1977.

Epstein D. and all Word Processing in Groups, Jones and Bartlett Pub-
lishers, Boston, 1992.

1.5 Rank of free groups

Theorem 3 If G is free on X and also on Y , then |X| = |Y |.

Proof. By the universal property of free groups any map X → Z2 gives rise
to a homomorphism of G into the cyclic group Z2 of order 2. Moreover, every
homomorphism G → Z2 can be obtained in this way (every homomorphism
is completely defined by its values on a given generating set). Hence there
are exactly 2|X| different homomorphism form G into Z2. This implies that

2|X| = 2|Y |

and, assuming Generalized Continuum Hypothesis from set theory, |X| =
|Y |. In fact, one may avoid using the Generalized Continuum Hypothesis
here, indeed, when one of the sets X or Y is finite the result follows as above.
If both of them are infinite then the result follows from an observation that
cardinality of a group generated by an infinite set A is equal to |A|. This
proves the theorem.

Corollary 2 Let X and Y be sets. Then

F (X) ' F (Y ) ⇔ |X| = |Y |.

Theorem 3 shows that the cardinality of a basis of a free group G is an
invariant of G which characterizes G uniquely up to an isomorphism.

Definition 2 Let G be a free group on X. Then the cardinality of X is
called the rank of G.

Sometimes we refer to a free group of rank n as to Fn.
Notice that if X ⊆ Y then the subgroup 〈X〉 generated by X in F (Y ) is

itself a free group with basis X. This implies that if m and n are cardinals
and n ≤ m, then Fn is embeddable into Fm.

We will show now that in some sense the reverse is also true for finite or
countable ranks.
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Proposition 2 Any countable free group G is embeddable into a free group
of rank 2.

Proof. To prove the result it suffices to find a free subgroup of countable
rank in a free group of rank 2.

Let F2 be a free group with a basis {a, b}. Denote

xn = b−nabn (n = 0, 1, 2, . . .)

and put
X = {x0, x1, . . .}.

We claim that X freely generates the subgroup 〈X〉 in F2. Indeed, let

w = xε1
i1

. . . xεn
in

be a reduced non-empty word in X±1. Then w can also be viewed as a word
in {a, b}:

w = b−i1aε1bi1b−i2aε2bi2 . . . b−inaεnbin .

Since w is reduced on X, then for each j = 1, . . . , n − 1 either ij 6= ij+1 or
ij = ij+1 and εj + εj+1 6= 0. In either case any reduction of w (as a word on
{a, b}) does not affect aεj and aεj+1 in the subword

b−ijaεjbijb−ij+1aεj+1bij+1 ;

i.e., the literals aεj and aεj+1 are present in the reduced form of w as a word in
{a, b}±1. Hence the reduced form of w is non-empty, so w 6= 1 in F2. Clearly,
〈X〉 is a free group of countable rank.

¤
Digression

Similar results are true for many other relatively free groups.

the discussion follows

References:


