### Math 970 mid-semester review

# Set-theoretic beginnings:

Functions:  $f: X \to Y$  injection, surjection, bijection; image,

inverse image  $f^{-1}(A) = \{x \in X : f(x) \in A\}$ 

Image:  $f(\bigcup A_{\alpha}) = \bigcup f(A_{\alpha})$ ,  $f(\bigcap A_{\alpha}) \subseteq \bigcap f(A_{\alpha})$ 

Inverse image:  $f^{-1}(\cup A_{\alpha}) = \cup f(A_{\alpha})$ ,  $f^{-1}(\cap A_{\alpha}) = \cap f^{-1}(A_{\alpha})$ ,  $f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$ 

Finite sets, infinite sets, countable sets

A is finite  $\Leftrightarrow \exists$  a surjection  $\{1,\ldots,n\} \to A \Leftrightarrow \exists$  an injection  $A \to \{1,\ldots,n\}$ .

A is countable  $\Leftrightarrow \exists$  a surjection  $\mathbb{N} \to A \Leftrightarrow \exists$  an injection  $A \to \mathbb{N}$ .

countable union of countables is countable, product of two countables is countable.

Cardinality: |A| = |B| if  $\exists$  a bijection  $f: A \to B$ 

Shroeder-Bernstein Thm: if  $\exists$  injection  $A \to B$  and  $\exists$  injection  $B \to A$ , then |A| = |B|

# **Topologies**

Idea: extend continuity to more general settings.

Metric spaces: (X, d),  $d: X \times X \to \mathbb{R}$  satisfies

$$d(x,y) \ge 0, d(x,y) = 0 \Leftrightarrow x = y, d(x,y) = d(y,x), \text{ and } d(x,z) \le d(x,y) + d(y,z)$$
.

 $f:(X,d)\to (Y,d')$  continuous ( = cts) if

 $\forall a \in X \text{ and } \forall \epsilon > 0 \ \exists \ \delta = \delta(a, \epsilon) > 0 \text{ so that } d(a, x) < \delta \Rightarrow d'(f(a), f(x)) > \epsilon.$ 

(Open) neighborhood:  $N_d(x, \epsilon) = \{ y \in X : d(x, y) < \epsilon \}$ 

Open set:  $\mathcal{U} \subseteq X$  is open if  $\forall x \in \mathcal{U} \exists \epsilon > 0$  so that  $N_d(x, \epsilon) \subseteq \mathcal{U}$ 

 $\mathcal{U} \subseteq X$  is open  $\Leftrightarrow \mathcal{U} = a$  union of neighborhoods.

 $f: X \to Y$  is cts  $\Leftrightarrow f^{-1}\mathcal{U}$  is open in  $X \forall \mathcal{U}$  open in Y

The collection  $\mathcal{T}$  of open sets in (X, d) satisfies

 $\emptyset, X \in \mathcal{T}$ 

if  $\mathcal{U}, \mathcal{V} \in \mathcal{T}$ , then  $\mathcal{U} \cap \mathcal{V} \in \mathcal{T}$ 

if  $\mathcal{U}_{\alpha} \in \mathcal{T} \ \forall \ \alpha \in I$ , then  $\bigcap \mathcal{U}_{\alpha} \in \mathcal{T}$ 

For X any set, a **topology** on X is any collection  $\mathcal{T}$  of subsets of X satisfying the above three conditions.

 $f:(X,\mathcal{T})\to (Y,\mathcal{T}') \text{ is cts} \Leftrightarrow f^{-1}(\mathcal{U})\in\mathcal{T} \text{ for all } \mathcal{U}\in\mathcal{T}'$ 

comparing topologies:  $\mathcal{T} \subseteq \mathcal{T}'$ , then  $\mathcal{T}$  is coarser than  $\mathcal{T}'$ ;  $\mathcal{T}'$  is finer than  $\mathcal{T}$ .

 $\mathcal{T} = \mathcal{T}' \Leftrightarrow \mathcal{T} \subseteq \mathcal{T}' \text{ and } \mathcal{T}' \subseteq \mathcal{T}$ 

Examples:

 $\mathcal{T}_i = \{\emptyset, X\} = \text{trivial topology } (= \text{indiscrete topology}).$ 

 $\mathcal{T}_d = \mathcal{P}(X) = \text{all subsets of } X = \text{discrete topology.}$ 

 $\mathcal{T}$  = open sets for a metric d on X = metric topology on X.

 $(X, \mathcal{T})$  is metrizable if  $\mathcal{T}$  is the metric topology for some metric on X.

 $\mathcal{T} = \{ \mathcal{U} \in X : X \setminus \mathcal{U} \text{ is finite} \} \cup \{\emptyset\} = \text{finite complement topology.}$ 

 $\mathcal{T} = \{\mathcal{U} \in X : X \setminus \mathcal{U} \text{ is countable}\} \cup \{\emptyset\} = \text{countable complement topology.}$ 

For  $a \in X$ ,  $\mathcal{T} = \{\mathcal{U} \subseteq X : a \in \mathcal{U}\} \cup \{\emptyset\} = \text{included point topology.}$ 

For  $a \in X$ ,  $\mathcal{T} = \{\mathcal{U} \subseteq X : a \notin \mathcal{U}\} \cup \{X\} = \text{excluded point topology.}$ 

On  $\mathbb{R}$ ,  $\mathcal{T} = \{(a, \infty) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\} = \text{infinite open ray topology.}$ 

On  $\mathbb{R}$ ,  $\mathcal{T} = \{(a, \infty) : a \in \mathbb{R}\} \cup \{[a, \infty) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\} = \text{infinite ray topology.}$ 

```
f: X \to (Y, \mathcal{T}'), then \mathcal{T} = \{f^{-1}(\mathcal{U}) : \mathcal{U} \in \mathcal{T}'\} = \text{coarsest top. on } X \text{ making } f \text{ cts.}
f: (X, \mathcal{T}) \to Y, then \mathcal{T}' = \{\mathcal{U} : f^{-1}(\mathcal{U}) \in \mathcal{T}\} = \text{finest topology on } Y \text{ making } f \text{ cts.}
```

Metric topologies also satisfy: if  $x, y \in X$ ,  $x \neq y$ , then  $\exists \mathcal{U}, \mathcal{V}$  open with  $x \in \mathcal{U}, y \in \mathcal{V}$  and  $\mathcal{U} \cap \mathcal{V} = \emptyset$  A topological space satisfying this property is called *Hausdorff*.

A topological property is a property which can be described in terms of open sets and relations between them. (For example, Hausdorffness.) Topology is, essentially, the study of topological properties and the relationships between them.

## Bases and subbases

Open sets for metric spaces were defined as unions of neighborhoods (= nbhds); this gives a topology <u>because</u>:

X = union of nbhds, and the intersection of two nbhds is a union of nbhds.

A collection  $\mathcal{B}$  of subsets of X is a basis if it satisfies those two properties, i.e.:

$$X = \bigcup \{B : B \in \mathcal{B}\}$$
, and

if 
$$B, B' \in \mathcal{B}$$
 and  $x \in B \cap B'$ , then  $\exists B'' \in \mathcal{B}$  with  $x \in B'' \subseteq B \cap B'$ .

The topology  $\mathcal{T}(\mathcal{B})$  that it *generates* is the unions of elements of  $\mathcal{B}$ .

A subbasis is a collection S of subsets whose union is X.

The basis  $\mathcal{B}(\mathcal{S})$  that it generates is the set of all finite intersections of elements of  $\mathcal{S}$ .

$$f: (X, \mathcal{T}) \to (Y, \mathcal{T}(\mathcal{B})) \text{ is } \operatorname{cts} \Leftrightarrow f^{-1}(B) \in \mathcal{T} \text{ for all } B \in \mathcal{B}$$
  
 $f: (X, \mathcal{T}) \to (Y, \mathcal{T}(\mathcal{B}(\mathcal{S}))) \text{ is } \operatorname{cts} \Leftrightarrow f^{-1}(S) \in \mathcal{T} \text{ for all } S \in \mathcal{S}$ 

$$\mathcal{U} \in \mathcal{T}(\mathcal{B}) \Leftrightarrow \forall x \in \mathcal{U} \exists B \in \mathcal{B} \text{ so that } x \in B \subseteq \mathcal{U} \quad ; \quad \mathcal{T}(\mathcal{B}) \subseteq \mathcal{T} \Leftrightarrow \mathcal{B} \subseteq \mathcal{T}$$

On  $\mathbb{R}$ ,  $\mathcal{B} = \{(a, b) : a, b \in \mathbb{R}\}$  is a basis for the usual (metric) topology.

 $\mathcal{B} = \{[a,b) : a,b \in \mathbb{R}\}$  is also a basis;  $\mathbb{R}$  with this topology is called the *Sorgenfrey line*.

# New spaces from old

Basic idea: topologies on new sets should be defined to make reasonable functions cts.

 $A\subseteq X$  ,  $(X,\mathcal{T})$  , then would like  $i:A\to X$  continuous, so define

$$\mathcal{T}_A = \{i^{-1}(\mathcal{U}) : \mathcal{U} \in \mathcal{T}\} = \{\mathcal{U} \cap A : \mathcal{U} \in \mathcal{T}\} = \text{subspace topology}$$

if 
$$\mathcal{B}$$
 is a basis for  $\mathcal{T}$ , then  $\{B \cap A : B \in \mathcal{B}\} = \mathcal{B}_A$  is a basis for  $\mathcal{T}_A$ 

If 
$$f: X \to Y$$
 is continuous, then  $f|_A: A \to Y$  is continuous;  $f|_A = f \circ i$ 

If  $B \subseteq A \subseteq X$  then the subspace topology B gets from  $(A, \mathcal{T}_A)$  is the same as it gets from  $(X, \mathcal{T})$ .

 $(X, \mathcal{T}), (Y, \mathcal{T}')$  top spaces, would like  $p_X : X \times Y \to X$  and  $p_Y : X \times Y \to Y$  (coord projections) to be cts.

So need  $p_X^1(\mathcal{U}) = \mathcal{U} \times Y$  and  $p_Y^1(\mathcal{V}) = X \times \mathcal{V}$  open. These form a subbasis, with basis  $\mathcal{B} = \{\mathcal{U} \times \mathcal{V} : \mathcal{U} \in \mathcal{T}, \mathcal{V} \in \mathcal{T}'\}$ ;  $\mathcal{T}(\mathcal{B}) = \text{the product topology on } X \times Y = \mathcal{T} \times \mathcal{T}'$ .

 $f: Z \to X \times Y$  is cts  $\Leftrightarrow p_X \circ f$  and  $p_Y \circ f$  are both continuous

If  $\mathcal{T} = \mathcal{T}(\mathcal{B}), \mathcal{T}' = \mathcal{T}(\mathcal{B}')$ , then  $\{B \times B' : B \in \mathcal{B}, B' \in \mathcal{B}'\}$  is a basis for  $\mathcal{T} \times \mathcal{T}'$ .

If  $A \subseteq X$ ,  $B \subseteq Y$ , then the subspace topology on  $A \times B \subseteq X \times Y$  is the same as  $\mathcal{T}_A \times \mathcal{T}_B$ 

Products in general:

 $(X_{\alpha}, \mathcal{T}_{\alpha})$  top. spaces,  $\alpha \in I$ , then there are two reasonable topologies on  $\prod X_{\alpha}$ : box topology: basis is  $\{\prod \mathcal{U}_{\alpha} : \mathcal{U}_{\alpha} \in \mathcal{T}_{\alpha}\}$  product topology: subbasis is  $\bigcup \{p_{\alpha}^{-1}(\mathcal{U}_{\alpha}) : \mathcal{U}_{\alpha} \in \mathcal{T}_{\alpha}\}\$ ;  $p_{\alpha} = \text{proj to } X_{\alpha}$ 

In the product topology,  $f: Z \to \prod X_{\alpha}$  is cts  $\Leftrightarrow p_{\alpha} \circ f$  is cts for all  $\alpha$ 

#### Closed sets

```
C \subseteq X is closed if X \setminus C = \mathcal{U} \in \mathcal{T}; i.e., C is closed if C = X \setminus \mathcal{U} for some \mathcal{U} \in \mathcal{T}
    \emptyset, X \text{ are closed } ; C, D \text{ closed } \Rightarrow C \cup D \text{ closed } ; C_{\alpha} \text{ closed } \Rightarrow \bigcap C_{\alpha} \text{ closed.}
    f: X \to Y \text{ is } \operatorname{cts} \Leftrightarrow f^{-1}\mathcal{U} \text{ is closed in } X \ \forall \ \mathcal{U} \text{ closed in } Y
    D \subseteq A \subseteq X is closed in (A, \mathcal{T}_A) \Leftrightarrow C = D \cap A for some D closed in (X, \mathcal{T})
Closure: cl(A) = \overline{A} = \bigcap \{C \subseteq X \text{ closed} : A \subseteq C\} = \text{smallest closed set containing } A
Interior: int(A) = \bigcup \{ \mathcal{T} \in \mathcal{T} : \mathcal{U} \subseteq A \} = largest open set contained in A
    \operatorname{cl}(X \setminus A) = X \setminus \operatorname{int}(A) ; \operatorname{int}(X \setminus A) = X \setminus \operatorname{cl}(A).
    C closed and A \subseteq C \Rightarrow \overline{A} \subseteq C
    A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B} \quad ; \quad \overline{A \cup B} = \overline{A} \cup \overline{B}
    A is closed \Leftrightarrow \overline{A} = A; A is open \Leftrightarrow \operatorname{int}(A) = A
    The closure of B \subseteq A as a subset of A = A \cap \operatorname{cl}_X(B)
    The interior of B \subseteq A as a subset of A = A \cap \operatorname{int}_X(B)
    f: X \to Y \text{ is cts} \Leftrightarrow \text{ for all } \underline{A \subseteq X} \text{ , } \underline{f(\overline{A}) \subseteq \overline{f(A)}}
    If A \subseteq X and B \subseteq Y, then \overline{A \times B} = \overline{A} \times \overline{B}
    x \in A \Leftrightarrow \text{ every open } \mathcal{U} \in \mathcal{T} \text{ that contains } x \text{ intersects } A.
x \in X is a limit point of A \subseteq X if x \in A \setminus \{x\}, i.e, every open set in X
that contains x hits A in a point other than x.
```

# More on continuity

 $\overline{A} = A \cup A'$ .

 $f: X \to Y$  and  $g: Y \to Z$  both cts  $\Rightarrow g \circ f: X \to Z$  is cts

The set of limit points of A = A' = the derived set of A

If  $X = \bigcup \mathcal{U}_a lpha$ ,  $\mathcal{U}_a lpha \in \mathcal{T}$  for all  $\alpha$ , and  $f: X \to Y$  has  $f|_{\mathcal{U}_a lpha}: \mathcal{U}_\alpha \to Y$  is cts for all  $\alpha$ , then f is cts.

If  $X = C \cup D$ , C, D both closed, and  $f: X \to Y$  has  $f|_C: C \to Y$  and  $f|_D: D \to Y$  cts, then f is cts.

In reverse: if  $X = C \cup D$ , C, D both closed,  $f: C \to Y$  and  $g: D \to Y$  are both cts, and f(x) = g(x) for all  $x \in C \cap D$ , then  $h: X \to Y$ , defined by h(x) = f(x) if  $x \in C$ , h(x) = g(x) if  $x \in D$ , is cts. A similar statement is true for X = union of open sets.

A cts bijection  $f: X \to Y$  is a homeomorphism if the inverse function  $f^{-1}: Y \to X$  is also cts. X and Y are called homeomorphic. A homeo gives not only a bijection between points of the spaces, but also between the open sets in the two topologies. Homeomorphic spaces have the same topological properties.

## Quotient spaces

Given an equivalence relation  $\sim$  on a topological space  $(X, \mathcal{T})$ , its quotient  $X/\sim$  is the set of equivalence classes under  $\sim$ . The quotient map  $p: X \to X/\sim$  can be used to induce a topology on  $X/\sim$ ;  $\mathcal{U}\subseteq X/\sim$  is open  $\Leftrightarrow p^{-1}(\mathcal{U})\in\mathcal{T}$ . This is the quotient topology on  $X/\sim$ .

Given a quotient map  $p: X \to X/\sim$  and a cts function  $f: X \to Z$  with g(a) = g(b) whenever p(a) = p(b), then f induces a continuous map  $\overline{f}: X/\sim Z$  with  $f = \overline{f} \circ p$ .

If  $A \subseteq X$ , we can define an equiv reln generated by  $x \sim y$  if  $x, y \in A$ ; the quotient is X/A.

If  $A \subseteq X$ ,  $B \subseteq Y$  and  $h: A \to B$  is a homeo, then we have an equiv reln generated by  $x \sim y$  if h(x) = y; quotient is  $X \cup_{A = B} Y$ 

If  $f: X \to Y$  is continuous, then we have the equiv reln on  $(X \times I) \cup Y$  generated by  $(x, 1) \sim f(x)$ ; the quotient is the mapping cylinder  $M_f$ .

#### Connectedness

Motivation: understand the topological property underlying the Intermediate Value Theorem:

If  $f:[a,b]\to\mathbb{R}$  is cts and c is between f(a) and f(b), then f(d)=c for some  $d\in[a,b]$ .

Idea: focus on when IVT fails: If  $f: X \to \mathbb{R}$  fails IVT, then

 $f^{-1}((-\infty,c)) = \mathcal{U} \in \mathcal{T}, f^{-1}((c,\infty)) = \mathcal{V} \in \mathcal{T} \text{ satisfy } \mathcal{U} \cup \mathcal{V} = X, \ \mathcal{U} \cap \mathcal{V} = \emptyset, a \in \mathcal{U}, b \in \mathcal{V}.$ 

Conversely, a pair of such sets allows us to build a cts  $f: X \to \{0, 1\} \subseteq \mathbb{R}$  failing IVT.

A separation (or disconnection) of  $(X, \mathcal{T})$  is a pair  $\mathcal{UV} \in \mathcal{T}$  with  $\mathcal{U} \cup \mathcal{V} = X$ ,  $\mathcal{U} \cap \mathcal{V} = \emptyset$ , and  $\mathcal{U}, \mathcal{V} \neq \emptyset$ . X is connected if it admits no separation.

A subset  $A \subseteq X$  is connected if  $(A, \mathcal{T}_A)$  is a connected space.

 $A \subseteq X$  is connected  $\Leftrightarrow$  whenever  $\mathcal{U}, \mathcal{V} \in \mathcal{T}$  with  $A \subseteq \mathcal{U} \cup \mathcal{V}$  and  $A \cap \mathcal{U} \cap \mathcal{V} = \emptyset$ , either  $A \subseteq \mathcal{U}$  or  $A \subseteq \mathcal{V}$ .

If  $A \subseteq X$  is connected and  $\mathcal{U}, \mathcal{V}$  separate X, then either  $A \subseteq \mathcal{U}$  or  $A \subseteq \mathcal{V}$ .

If  $(X, \mathcal{T})$  is connected and  $\mathcal{T}' \subseteq \mathcal{T}$ , then  $(X, \mathcal{T}')$  is connected.

If  $A \subseteq X$  is connected and  $f: X \to Y$  is cts, then  $f(A) \subseteq Y$  is connected.

If  $A_{\alpha} \subseteq X$  are connected  $\forall \alpha$  and  $\bigcap A_{\alpha} \neq \emptyset$ , then  $\bigcup A_{\alpha}$  is connected.

If  $A \subseteq X$  is connected and  $A \subseteq B \subseteq \overline{A}$ , then B is connected.

If  $X_{\alpha}$  are all connected, then  $\prod X_{\alpha}$  is connected, when given the product topology. This is false in general, when using the box topology.

The connected subsets of  $\mathbb{R}$  are precisely the intervals:

$$(a,b),[a,b),(a,b],[a,b],(-\infty,b),(-\infty,b],(a,\infty),[a,\infty),\emptyset,\mathbb{R}$$
.

### Path-connectedness

A path in X is a cts function  $\gamma:[0,1]\to X$ . X is path-connected if foa  $x,y\in X$   $\exists$  a path  $\gamma:[0,1]\to X$  with  $\gamma(0)=x,\gamma(1)=y$ .

(X, cat) path-connected  $\Rightarrow (X, cat)$  connected.

The converse is not true; there are connected spaces which are not path-connected.

If  $A \subseteq X$  is path-connected and  $f: X \to Y$  is cts, then  $f(A) \subseteq Y$  is path-connected. The relation  $x \sim y$  if  $\exists$  connected  $A \subseteq X$  with  $x, y \in A$  is an equivalence relation; the equivalence classes are the *connected components* [x] of X.

 $[x] = \bigcup \{A \subseteq X \text{ connected} : x \in A\} = \text{largest connected subset containing } x.$ 

Connected components are closed subsets of X.

The relation  $x \sim y$  if  $\exists$  path in X joining x and y is an equivalence relation; the equivalence classes are the *path components*  $[x]_p$  of X.

 $[x]_p = \bigcup \{A \subseteq X \text{ path connected} : x \in A\} = \text{largest path connected subset containing } x.$ 

 $[x]_p \subseteq [x]$ ; each [x] is a disjoint union of  $[y]_p$ 's.