Math 970 mid-semester review

Set-theoretic beginnings:
Functions: f: X — Y . injection, surjection, bijection; image,
inverse image f~1(A) ={z € X : f(z) € A}
tmage: f(JAa) =UF(4a) , F(N4a) € N F(Aa)
Inverse image: f~1(UAq) = UF(Aa) , £~ (N4a) = Nf~1(Aa), FHY\A) = X\ F1(A)
Finite sets, infinite sets, countable sets
A is finite & 3 a surjection {1,...,n} - A < 3 an injection A — {1,... ,n} .
A is countable & J a surjection N - A < J an injection A — N .
countable union of countables is countable, product of two countables is countable.
Cardinality: |A| = |B| if 3 a bijection f: A - B
Shroeder-Bernstein Thm: if 3 injection A — B and 3 injection B — A, then |A| = |B)|

Topologies
Idea: extend continuity to more general settings.
Metric spaces: (X,d) , d: X x X — R satisfies
d(z,y) >0,d(z,y) =0« z=y,d(z,y) =d(y,z), and d(z, z) < d(z,y) + d(y, 2) .
f:(X,d) = (Y,d") continuous ( = cts) if
Vae X andVe>030=4d(a,e) > 0so that d(a,z) < = d'(f(a), f(z)) > e
(Open) neighborhood: Ny(z,€) = {y € X : d(x,y) < €}
Open set: U C X isopen if Vo € U 3 € > 0 so that Ny(z,e) CU
U C X is open & U = a union of neighborhoods.
f: X —=Yiscts & f~U isopenin X VU openin Y
The collection 7 of open sets in (X, d) satisfies
0,XeT
ifU,veT,thenUNVeT
ifUy € TVa€l, then U, €T

For X any set, a topology on X is any collection 7 of subsets of X satisfying the above
three conditions.
(X, T)= (Y, T)iscts & f~YU)eT foralltd € T’
comparing topologies: 7 C 77, then T is coarser than 7' ; T’ is finer than T .
T=T'& TCT andT'CT
Examples:
T; = {0, X} = trivial topology ( = indiscrete topology).
Ti = P(X) = all subsets of X = discrete topology.
T = open sets for a metric d on X = metric topology on X.
(X, T) is metrizable if T is the metric topology for some metric on X.
T ={U € X: X\U is finite} U {Q} = finite complement topology.
T ={U € X : X \Uis countable} U {)} = countable complement topology.
Forae X, T={UCX:aecU}U{D} = included point topology.
Forae X, T={UCX:a¢U}U{X} = excluded point topology.
On R, 7 = {(a,00) : a € R} U {0, R} = infinite open ray topology.
On R, 7 = {(a,00) : a € R} U{[a,0) : a € R} U{D, R} = infinite ray topology.
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f:X = (Y,T'), then T = {f~}(U) : U € T'} = coarsest top. on X making f cts.
f:(X,T)—=Y ,then T" = {U: f~1(U) € T} = finest topology on Y making f cts.

Metric topologies also satisfy: if z,y € X, z # y, then 3 U,V open with z € U,y € V and
UNY =0 A topological space satisfying this property is called Hausdorff.

A topological property is a property which can be described in terms of open sets and
relations between them. (For example, Hausdorffness.) Topology is, essentially, the study
of topological properties and the relationships between them.

Bases and subbases

Open sets for metric spaces were defined as unions of neighborhoods ( = nbhds);

this gives a topology because:
X = union of nbhds, and the intersection of two nbhds is a union of nbhds.

A collection B of subsets of X is a basis if it satisfies those two properties, i.e.:
X=U{B:Be€B},and
if B,B'e Band x € BN B’, then 3 B” ¢ Bwithz € B" C BN B'.

The topology T (B) that it generates is the unions of elements of B .

A subbasis is a collection S of subsets whose union is X.
The basis B(S) that it generates is the set of all finite intersections of elements of S .
(X, T)—= (Y, T(B)iscts & f~Y(B)eT forall BeB
(X, T)= (Y, T(B(S))) iscts & f~1S)eT forall SeS
UeTB)& VeeUdUTBeBsothatze BCU ;3 TB)CT & BCT
On R, B = {(a,b) : a,b € R} is a basis for the usual (metric) topology.
B = {[a,b) : a,b € R} is also a basis; R with this topology is called the Sorgenfrey line.

New spaces from old
Basic idea: topologies on new sets should be defined to make reasonable functions cts.
AC X, (X,T), then would like i : A — X continuous, so define
Ta={i"'(U):UeT}={UNA:U¢€c T} = subspace topology
if B is a basis for 7 , then {BN A : B € B} = B4 is a basis for T4
If f: X - Y is continuous, then f|4: A — Y is continuous; f|4 = foi
If BC A C X then the subspace topology B gets from (A, T4) is the same as it gets
from (X, 7).
(X,T), (Y, T") top spaces, would like px : X xY - X and py : X XY =Y
(coord projections) to be cts.
So need pL (U) =U x Y and p3,(V) = X x V open. These form a subbasis, with basis
B={UxYV:UeT,VeT'} ; T(B)=the product topologyon X xY =T x T'.
f:Z—=>XxYiscts & pxofand py o f are both continuous
If7=T(B), T"=T(B'), then {Bx B :B¢eB,B" € B} is abasis for T x T".
If AC X,B CY, then the subspace topology on A x B C X X Y is the same as
TaxTr

Products in general:
(Xa, To) top. spaces, a € I, then there are two reasonable topologies on [ X4:
box topology: basis is {[[Us : Uy € Ta}
product topology: subbasis is | J{p; (Us) : Uy € T} ; Pa = DProj to X,
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In the product topology, f: Z — [[ Xq is cts & pq o f is cts for all «

Closed sets
CCXisclosedif X\C=UecT ; ie,Cisclosedif C =X\U for someld € T
0, X are closed ; C, D closed = C U D closed ; C,, closed = (| C, closed.
f: X = Yiscts & f~U is closed in X V U closed in Y
D CAC X isclosed in (A,74) & C = Dn A for some D closed in (X,7)

Closure: cl(A) = A= {C C X closed : A C C} = smallest closed set containing A
Interior: int(A) = ({7 € T : U C A} = largest open set contained in A
(X \A)=X\int(A) ; int(X\A)=X\cl(4).
Cclosedand ACC=ACC
ACB=ACB ; AUB=AUB
Aisclosed & A=A ; Aisopen < int(4)=A
The closure of B C A as a subset of A = ANclx(B)
The interior of B C A as a subset of A = ANintx (B)
f: X —>Yiscts & forall AC X, f(A) C f(A)
IfACXand BCY,then AxB=AxDB
x € A& every open U € T that contains x intersects A.
z € X is a limit point of A C X if x € A\ {x} , i.e, every open set in X
that contains x hits A in a point other than x.
The set of limit points of A = A’ = the derived set of A
A=AUA".
More on continuity
f:X—=>Yandg:Y — Zbothcts =gof:X — Ziscts
If X =JU,lpha, Uylpha € T for all o, and f: X — Y has flu,iphe : Us — Y is cts
for all a, then f is cts.
If X =CUD,C,D both closed, and f: X - Y has fl[c:C —Y and flp: D =Y
cts, then f is cts.
In reverse: if X = C UD, C,D both closed, f:C —Y and g: D — Y are both cts,
and f(z) = g(z) for all z € CN D, then h : X — Y, defined by h(z) = f(z) if x € C,
h(z) =g(z) if x € D, is cts. A similar statement is true for X = union of open sets.

A cts bijection f : X — Y is a homeomorphism if the inverse function f~!:Y — X is
also cts. X and Y are called homeomorphic. A homeo gives not only a bijection between
points of the spaces, but also between the open sets in the two topologies. Homeomorphic
spaces have the same topological properties.

Quotient spaces

Given an equivalence relation ~ on a topological space (X, 7), its quotient X/ ~ is
the set of equivalence classes under ~. The quotient map p : X — X/ ~ can be used
to induce a topology on X/ ~; U C X/ ~ is open < p~*(U) € T. This is the quotient
topology on X/ ~.

Given a quotient map p : X — X/ ~ and a cts function f : X — Z with g(a) = g(b)
whenever p(a) = p(b), then f induces a continuous map f : X/ ~— Z with f = fop.

If A C X, we can define an equiv reln generated by x ~ y if x,y € A; the quotient

is X/A.



fACX,BCY and h: A — B is a homeo, then we have an equiv reln generated
by x ~ y if h(x) = y; quotient is X Ua_p Y

If f: X — Y is continuous, then we have the equiv reln on (X x I) UY generated
by (z,1) ~ f(x); the quotient is the mapping cylinder M.

Connectedness
Motivation: understand the topological property underlying the Intermediate Value
Theorem:
If f:[a,b] > R is cts and c is between f(a) and f(b), then f(d) = c¢ for some
d € [a,b].
Idea: focus on when IVT fails: If f: X — R fails IVT, then
FH(=o0,0)) =U € T,fH(c,00)) =V € Tsatisfy UV = X, UNYV = 0,
acU,beV.
Conversely, a pair of such sets allows us to build a cts f : X — {0,1} C R failing IVT.

A separation (or disconnection) of (X,T) is a pair UV € T withUUY = X, UNYV =,

and U,V # (). X is connected if it admits no separation.

A subset A C X is connected if (A, T4) is a connected space.

A C X is connected < whenever Y,V € T with ACUUY and ANUNY = (),
either ACU or AC V.

If A C X is connected and U,V separate X, then either A CU or A C V.

If (X,7) is connected and 7' C T, then (X,7") is connected.

If AC X is connected and f: X — Y is cts, then f(A) CY is connected.

If A, C X are connected V « and () Ay # 0, then | A, is connected.

If A C X is connected and A C B C A, then B is connected.

If X, are all connected, then [ X, is connected, when given the product topology.

This is false in general, when using the box topology.

The connected subsets of R are precisely the intervals:
(a,b),[a,b), (a,b],[a,b], (—o0,b), (—00,b], (a,0), [a,0),0,R .
Path-connectedness
A path in X is a cts function v : [0,1] = X. X is path-connected if foa z,y € X J a
path v:[0,1] - X with v(0) = z,y(1) =y .
(X, cat) path-connected = (X, cat) connected.
The converse is not, true; there are connected spaces which are not path-connected.
If A C X is path-connected and f : X — Y is cts, then f(A) C Y is path-connected.
The relation x ~ gy if 9 connected A C X with x,y € A is an equivalence relation; the
equivalence classes are the connected components [x] of X.
[z] = J{A C X connected : z € A} = largest connected subset containing x.
Connected components are closed subsets of X.
The relation x ~ y if 3 path in X joining x and y is an equivalence relation; the equivalence
classes are the path components [x], of X.
z], = U{A C X path connected : * € A} = largest path connected subset con-
taining .
[z], C [z] ; each [z] is a disjoint union of [y], ’s.



