Math 970 Homework and Midterm problems

- 1. Show that if $f:X\to Y$ is a function, then the inverse image of subsets of Y satisfies:
- (a) $f^{-1}(\bigcup_{i \in I} \mathcal{U}_i) = \bigcup_{i \in I} f^{-1}(\mathcal{U}_i)$
- (b) $f^{-1}(\bigcap_{j\in J} \mathcal{V}_j) = \bigcap_{j\in J} f^{-1}(\mathcal{V}_j)$
- (c) $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$
- 2. With notation as in problem # 1, show, by contrast, that some of the corresponding results for the *image* of subsets of X do *not* hold in general. Under what conditions of the function f would each property that fails actually hold true?
- 3. Show that if $f:(X,d) \to (Y,d')$ is a function between metric spaces which satisfies, for some $K \in \mathbb{R}$, $d'(f(x),f(y)) \leq K \cdot d(x,y)$ for all $x,y \in X$, then f is continuous. In particular, if f decreases distances, then f is continuous.
- 4. Show that the metrics d_1 and d_2 on \mathbb{R}^n satisfy

$$d_2(\vec{x}, \vec{y}) \le d_1(\vec{x}, \vec{y}) \le n \cdot \max\{|x_1 - y_1|, \dots |x_n - y_n|\} \le n \cdot d_2(\vec{x}, \vec{y})$$

Conclude that d_1 and d_2 give the same open sets for \mathbb{R}^n .

5. Show that if (X, d) is a metric space, then (X, \bar{d}) , where

$$\bar{d}(x,y) = \min\{d(x,y), 1\}$$

is also a metric space, with the *same* open sets as (X, d).

6. If (X, \mathcal{T}) is a topological space, Y is a set, and $f: X \to Y$ is a function, show that

$$\mathcal{T}' = \left\{ \mathcal{U}' \subseteq Y : f^{-1}(\mathcal{U}') \in \mathcal{T} \right\}$$

is the finest topology on Y for which $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ is continuous.

(Note that this problem is actually asking you to show three things...)

7. If (X, \mathcal{T}) is a topological space, and $A \subseteq X$, then $A \in \mathcal{T}$ if and only if

for all
$$x \in A$$
, there is a $U \in \mathcal{T}$ so that $x \in U \subseteq A$

- 8. Show that $\mathcal{B} = \{(a, \infty) \times (b, \infty) : a, b \in \mathbb{R}\}$ is a basis for a topology \mathcal{T} on $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$, which is coarser than the usual Euclidean topology on \mathbb{R}^2 . Show that $\mathcal{B}' = \{[a, \infty) \times [b, \infty) : a, b \in \mathbb{R}\}$ is a basis for a topology \mathcal{T}' which is strictly finer than \mathcal{T} , and not comparable to the usual Euclidean topology.
- 9. Show that, in general, if \mathcal{B} and \mathcal{B}' are both bases for topologies on X, that $\mathcal{B} \cap \mathcal{B}'$ and $\mathcal{B} \cup \mathcal{B}'$ need not be. Show, however, that $\mathcal{B}'' = \{B \cap B' : B \in \mathcal{B}, B' \in \mathcal{B}'\}$ is a basis for a topology, and $\mathcal{T}(\mathcal{B}'')$ is the coarest topology containing both \mathcal{B} and \mathcal{B}' .
- 10. Show that the topology generated by a basis \mathcal{B} is the coarsest topology <u>containing</u> \mathcal{B} (i.e., it is the intersection of all such topologies).
- 11. Let (X, \mathcal{T}) be a topological space, $B \subseteq X$ a subset, and \mathcal{T}_B the subspace topology on B. If $A \subseteq B$, show that the subspace topology that it inherits from B is the <u>same</u> as the subspace topology that it inherits from X.
- 12. Show that if $A \subseteq X$ and (X, \mathcal{T}) is Hausdorff, then the subspace topology on A is Hausdorff.

- 13. Show that if (X, d) and (Y, d') are metric spaces, then the product topology on $X \times Y$ is metrizable. [There are lots of (correct) choices of metric on $X \times Y$; you can take your cue from \mathbb{R}^2 .]
- 14. Show that if $(X, \mathcal{T}), (Y, \mathcal{T}')$ are topological spaces and $x_0 \in X$, then the function $\iota_{x_0}: Y \to X \times Y$, $\iota_{x_0}(y) = (x_0, y)$

is continuous.

- 15. Show that if (X, d) is a metric space, then the metric $d: X \times X \to \mathbb{R}$ is continuous (where $X \times X$ has the product topology). Show, further, that the metric topology \mathcal{T} is the <u>coarsest</u> topology on X for which d is continuous.
 - (Hint: show that if $\mathcal{T}' \subsetneq \mathcal{T}$, then $N_d(x_0, \epsilon) \notin \mathcal{T}'$ for some x_0 and ϵ ; now look at problem # 14.)
- 16. Show that, if X is an infinite set, then the finite complement topology \mathcal{T}_f on $X \times X$ is not a product topology, i.e., there do not exist topologies $\mathcal{T}, \mathcal{T}'$ on X whose product topology is \mathcal{T}_f . On the other hand, if X is finite, show that \mathcal{T}_f on $X \times X$ is a product topology.

(Hint: the <u>basis</u> for the product topology would have to be $\subseteq \mathcal{T}_f$...)

- 17. For $A, B \subseteq X$ with (X, \mathcal{T}) a topological space, if A is open in X and B is closed in X, then $A \setminus B$ is open and $B \setminus A$ is closed.
- 18. Show that if $A, B \subseteq X$, then
 - (a) $\overline{A \cup B} = \overline{A} \cup \overline{B}$
 - (b) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$, but that equality does not hold in general,
 - (c) $\overline{A \setminus B} \supseteq \overline{A} \setminus \overline{B}$, but that equality does not hold in general.
- 19. Show that if $A \subseteq X$ and X has two topologies $\mathcal{T} \subseteq \mathcal{T}'$, then if $x \in X$ is a limit point of A w.r.t. \mathcal{T}' , then it is a limit point of A w.r.t. \mathcal{T} .
- 20. Show that if $A_i \subseteq X_i$ for all $i \in I$, then

$$\overline{\prod_i A_i} = \prod_i \overline{A_i} \subseteq \prod_i X_i$$

for both the product and box topologies.

- 21. Find the closure of the set $(0,1) \subseteq \mathbb{R}$, when \mathbb{R} has the
 - (a) finite complement topology
 - (b) infinite (open) ray to the right topology
 - (c) discrete topology
 - (d) lower limit topology, generated by the basis $\mathcal{B} = \{[a, b) : a, b \in \mathbb{R}\}$
- 22. Show that if X is a space with topology generated by a basis \mathcal{B} , then X is Hausdorff if and only if for every $x, y \in X$ with $x \neq y$, there are $B, B' \in \mathcal{B}$ with $x \in B, y \in B'$ and $B \cap B' = \emptyset$.
- 23. Show that if \mathcal{T} is the usual topology on \mathbb{R} , the space $X = \mathbb{R} \cap \{*\}$, with topology generated by the basis $\mathbb{B} = \mathcal{T} \cup \{(U \setminus 0) \cup \{*\} : U \in \mathcal{T} \text{ and } 0 \in U\}$ is not Hausdorff, but every one-point subset of X is closed. [FYI: X is called the *line with two origins*.]

- 24. Show that the line with two origins is the quotient of two disjoint copies of \mathbb{R} (think: $\mathbb{R} \times \{0,1\}$). Conclude that the quotient of a Hausdorff space need not be Hausdorff.
- 25. Show that the quotient space obtained by the equivalence relation \sim on $[0,1] \times [0,1]$ generated by (i.e., add $a \sim a$, and $a \sim b$ whenever $b \sim a$, and any relation that transitivity would *force* on you)

$$(0,y)\sim (1,y)$$
 for all $y\in [0,1]$ and $(x,0)\sim (x,1)$ for all $x\in [0,1]$ admits a continuous bijection to $S^1\times S^1$.

26. Find an example of subspaces $A, B \subseteq \mathbb{R}$ (giving \mathbb{R} the usual topology) for which there is a continuous bijection

$$f:A\to B$$

whose inverse is **not** continuous.

- 27. Show that if $\mathcal{T} \subseteq \mathcal{T}'$ are topologies on X and (X, \mathcal{T}') is connected, then so is (X, \mathcal{T}) .
- 28. Find an example of a space X and subset $A \subseteq X$ where int(A) and cl(A) are both connected, but A is not.
- 29. Show by example that for $f: X \to Y$ continuous and $A \subseteq Y$, having one of $f^{-1}(A)$ and A connected does <u>not</u> necessarily imply that the other is connected.
- 30. Show that if X_{α} , $\alpha \in I$ are all path-connected, then so is $\prod_{\alpha \in I} X_{\alpha}$, if we use the product topology.
- 31. Show that if $A_{\alpha} \subseteq X$, $\alpha \in I$ are all path-connected, and $\bigcap_{\alpha \in I} A_{\alpha} \neq \emptyset$, then $\bigcup_{\alpha \in I} A_{\alpha}$ is path-connected.
- 32. Show that if $C \subseteq \mathbb{R}^3$ is countable, then $\mathbb{R}^3 \setminus C$ is path-connected. (Hint: a plane in \mathbb{R}^3 will hit C in how many points?)
- 33. Show that if (X, \mathcal{T}) is compact, and $\mathcal{T}' \subseteq \mathcal{T}$, then (X, \mathcal{T}') is compact.
- 34. Show that if (X, \mathcal{T}) is a topological space and A, B are compact subsets of X, then $A \cup B$ is compact.
- 35. Give an example of a space (X, \mathcal{T}) and subsets $A, B \subseteq X$ so that A and B are compact but $A \cap B$ is not.

(Note: your space X cannot be Hausdorff....)

36. Let $X = \mathbb{R}$ with the infinite ray topology

$$\mathcal{T} = \{(a, \infty) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}\$$

Show that $A = \{0\}$ is a compact subset of X, but its closure \bar{A} <u>isn't</u>.

- 37. Show that if (X, \mathcal{T}) is a Hausdorff space and $A, B \subseteq X$ are disjoint compact subsets of X, then there are subsets $\mathcal{U}, \mathcal{V} \in \mathcal{T}$ so that $A \subseteq \mathcal{U}, B \subseteq \mathcal{V}$, and $\mathcal{U} \cap \mathcal{V} = \emptyset$.
- 38. Show that if X is limit point compact, and A is a closed subset of X, then A is limit point compact.
- 39. Give an example of a limit point compact space X and a continuous function $f: X \to Y$ for which $f(X) \subseteq Y$ is not limit point compact.

Note: for the purposes of the following problems, "regular" means points and (disjoint) closed sets can be separated with open sets, "normal" means disjoint closed sets can be separated, T_3 means T_1 and regular, and T_4 means T_1 and normal.

- 40. Show by examples that the continuous image of T_3 need not be T_3 , and that the continuous image of a non- T_3 space can be T_3 !
- 41. Show that every closed subset of a normal space is normal, and that every closed subset of a T_4 space is T_4 .
- 42. Show that for any collection $X_{\alpha} \neq \emptyset$ of topological spaces, if $\prod_{\alpha} X_{\alpha}$ is T_4 in the product topology, then X_{α} is T_4 for all α .

(Hint: embed X_{α} in $\prod_{\alpha} X_{\alpha}$ as a closed subset!)

43. Show that a compact metric space (X, d) is second countable.

(Hint: look at $\{N_d(x, 1/n) : x \in X\}$ for each n.)

- 44. Show that a closed subset of a Lindelöf space is Lindelöf.
- 45. Show by example that a closed subset of a separable space need not be separable.
- 46. Show that the continuous image of a separable space is separable, and the continuous image of a Lindelöf space is Lindelöf..
- 47. Show that if $(X, \mathcal{T}(\mathcal{C}))$ is second countable (with $\mathcal{C} = \{C_n\}_{n=1}^{\infty}$ countable), then every basis \mathcal{B} for $\mathcal{T} = \mathcal{T}(\mathcal{C})$ contains a countable basis $\mathcal{B}' \subseteq \mathcal{B}$.

(Hint: look at all $B \in \mathcal{B}$ with $C_m \subseteq B \subseteq C_n$ for some m, n; then pick (at most) one for each pair...)

48. Show that if X is Hausdorff and $f:X\to X$ is continuous, then the fixed point set

$$Fix(f) = \{x \in X : f(x) = x\}$$

of f is a closed subset of X.

A subset $A \subseteq X$ is a <u>retract</u> of X if there is a continuous map $r: X \to A$ with $r \circ i = Id$, i.e., r(a) = a for all $a \in A$. The map r is called a retraction.

49. Show that if X is Hausdorff and $A \subseteq X$ is a retract of X, then A is closed.

(Hint: show that A is the fixed point set of some map!)

50. Show that if $r: X \to A$ is a retraction and $a \in A$, then

$$r_*:\pi_1(X,a)\to\pi_1(A,a)$$

is a surjective homomorphism.

51. Show that if $a \in A \subseteq X$, $\pi_1(X, a) = \{1\}$, and $f: (A, a) \to (Y, b)$ is continuous, then if f extends to a continuous map $g: X \to Y$ (i.e., $g|_A = f$), then $f_*: \pi_1(A, a) \to \pi_1(Y, b)$ is the trivial homomorphism.

(The contrapositive of the last part of this statement sounds stronger....)

52. A space X is <u>contractible</u> if the identity map $I:X \to X$ is homotopic to the constant map $c(x) = x_0$. Show that if X is contractible then any two maps $f, g : Y \to X$ are homotopic. Show that this implies that $\pi_1(X, x_0) = \{1\}$.

M1. For X any set, and $a, b \in X$, show that the collection

$$\mathcal{T} = \{ A \subseteq X : a \in A \text{ or } b \notin A \}$$

- forms a topology on X.
- M2. Show that if (X, \mathcal{T}) and (Y, \mathcal{T}') are both Hausdorff, then $X \times Y$, with the product topology, is Hausdorff.
- M3. Show that if $\mathcal{T} \subseteq \mathcal{T}'$ are topologies on X, and $A \subseteq X$, then $\operatorname{cl}_{\mathcal{T}'}(A) \subseteq \operatorname{cl}_{\mathcal{T}}(A)$. Show, further, that if $\mathcal{T} \neq \mathcal{T}'$ then there is an $A \subseteq X$ with $\operatorname{cl}_{\mathcal{T}'}(A) \neq \operatorname{cl}_{\mathcal{T}}(A)$.
- M4. For $X = \mathbb{R}$, let \mathcal{T}_1 be the excluded point topology, excluding 0, and let \mathcal{T}_2 be the included point topology, including 1. Show that if a continuous function

$$f:(X,\mathcal{T}_1)\to(X,\mathcal{T}_2)$$

- has f(0) = 1, then f is constant. Show, more generally, that any continuous function $f: (X, \mathcal{T}_1) \to (X, \mathcal{T}_2)$ has image consisting of at most 2 points.
- M5. Show that if $\mathcal{T} \subseteq \mathcal{T}'$ are topologies on the set X and (X, \mathcal{T}') is path-connected, then (X, \mathcal{T}) is path-connected.