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Math 970 Homework and Midterm problems

Show that if f:X — Y is a function, then the inverse image of subsets of Y satisfies:
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Y\ B) =X\ f71(B)

. With notation as in problem # 1, show, by contrast, that some of the corresponding

results for the image of subsets of X do not hold in general. Under what conditions
of the function f would each property that fails actually hold true?

Show that if f:(X,d) — (Y, d’) is a function between metric spaces which satisfies, for
some K € R, d'(f(z), f(y)) < K -d(z,y) for all z,y € X, then f is continuous. In
particular, if f decreases distances, then f is continuous.

Show that the metrics d; and ds on R" satisfy
do (T, ) < di(Z,9) < nemax{|zy — 1], |20 — yn|} < - do(Z,7)

Conclude that d; and ds give the same open sets for R™ .

Show that if (X, d) is a metric space, then (X, d), where

d(z,y) = min{d(z,y), 1}
is also a metric space, with the same open sets as (X, d) .
If (X,7) is a topological space, Y is a set, and f: X — Y is a function, show that
T ={WCYy U eT)
is the finest topology on Y for which f: (X,7) — (Y,7’) is continuous.
(Note that this problem is actually asking you to show three things...)
If (X,7) is a topological space, and A C X, then A € 7 if and only if
for all x € A, thereisa U € 7 sothat t e U C A
Show that B = {(a,00) x (b,0) : a,b € R} is a basis for a topology 7 on R? = R x R,
which is coarser than the usual Euclidean topology on R%. Show that B’ = {[a, o0) X

[b,00) : a,b € R} is a basis for a topology 7’ which is strictly finer than 7, and not
comparable to the usual Euclidean topology.

Show that, in general, if B and B’ are both bases for topologies on X, that BNB’" and
B U B’ need not be. Show, however, that B = {BNB': B € B,B' € B’} is a basis
for a topology, and 7 (B") is the coarest topology containing both B and B'.

Show that the topology generated by a basis B is the coarsest topology containing B
(i.e., it is the intersection of all such topologies).

Let (X, 7) be a topological space, B C X a subset, and 7p the subspace topology on
B. If A C B, show that the subspace topology that it inherits from B is the same as
the subspace topology that it inherits from X.

Show that if A C X and (X,7) is Hausdorff, then the subspace topology on A is
Hausdorff.
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Show that if (X, d) and (Y, d") are metric spaces, then the product topology on X x Y
is metrizable. [There are lots of (correct) choices of metric on X x Y’; you can take
your cue from R? ]

Show that if (X,7),(Y,7") are topological spaces and xy € X, then the function
b 0 Y = X XY | 12(y) = (20,y)
is continuous.

Show that if (X,d) is a metric space, then the metric d : X x X — R is continuous
(where X x X has the product topology). Show, further, that the metric topology 7°
is the coarsest topology on X for which d is continuous.

(Hint: show that if 7/ C 7, then Ny(zo,€) ¢ T’ for some 2y and € ; now look at
problem # 14.)

Show that, if X is an infinite set, then the finite complement topology 7y on X x X is
not a product topology, i.e., there do not exist topologies 7,7’ on X whose product
topology is 7¢. On the other hand, if X is finite, show that 7 on X x X is a product
topology.

(Hint: the basis for the product topology would have to be C 7 ...)

For A, B C X with (X,7) a topological space, if A is open in X and B is closed in
X, then A\ B is open and B\ A is closed.

Show that if A, B C X, then

(a) AUB=AUB

(b) AN B C AN B, but that equality does not hold in general,
(c) A\ B D A\ B, but that equality does not hold in general.

Show that if A C X and X has two topologies 7 C 7', then if z € X is a limit point
of A w.r.t. 7/, then it is a limit point of A w.r.t. 7.

Show that if A; C X for all 7 € I, then

m: HE - IZIXi

for both the product and box topologies.
Find the closure of the set (0,1) C R, when R has the

(a) finite complement topology

(b) infinite (open) ray to the right topology

(c) discrete topology

(d) lower limit topology, generated by the basis B = {[a,b) : a,b € R}

Show that if X is a space with topology generated by a basis B, then X is Hausdorff
if and only if for every z,y € X with x # y, there are B,B’ € Bwithz € B,y € B’
and BN B’ = 0.

Show that if 7 is the usual topology on R, the space X = RN {x} , with topology
generated by the basis B =7 U{(U\0)U{*}:U € 7 and 0 € U} is not Hausdorff,
but every one-point subset of X is closed. [FYI: X is called the line with two origins.]
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Show that the line with two origins is the quotient of two disjoint copies of R (think:
R x {0,1}). Conclude that the quotient of a Hausdorff space need not be Hausdorff.

Show that the quotient space obtained by the equivalence relation ~ on [0, 1] x [0, 1]
generated by (i.e., add a ~ a, and a ~ b whenever b ~ a, and any relation that
transitivity would force on you)

(0,y) ~ (1,y) for all y € [0,1] and (z,0) ~ (x,1) for all x € [0, 1]
admits a continuous bijection to St x S! .

Find an example of subspaces A, B C R (giving R the usual topology) for which there
is a continuous bijection

f:A—B
whose inverse is not continuous.
Show that if 7 C 7' are topologies on X and (X,7") is connected, then so is (X, 7).

Find an example of a space X and subset A C X where int(A) and cl(A) are both
connected, but A is not.

Show by example that for f : X — Y continuous and A C Y, having one of f~1(A)
and A connected does not necessarily imply that the other is connected.

Show that if X, «a € I are all path-connected, then so is H X, if we use the product

ael
topology.
Show that if A, C X,«a € I are all path-connected, and ﬂ Ay # 0, then U A, is
acl acl

path-connected.

Show that if C C R3? is countable, then R3 \ C' is path-connected. (Hint: a plane in
R3 will hit C in how many points?)

Show that if (X,7) is compact, and 7’ C 7, then (X,7’) is compact.

Show that if (X,7) is a topological space and A, B are compact subsets of X, then
AU B is compact.

Give an example of a space (X, 7) and subsets A, B C X so that A and B are compact
but AN B is not.

(Note: your space X cannot be Hausdorff....)
Let X = R with the infinite ray topology
T = {(a,0) :a € R} U{0,R}
Show that A = {0} is a compact subset of X, but its closure A isn’t.

Show that if (X,7) is a Hausdorff space and A, B C X are disjoint compact subsets
of X, then there are subsets Y,V € 7 sothat ACU, BCV,andUNY =10 .

Show that if X is limit point compact, and A is a closed subset of X, then A is limit
point compact.

Give an example of a limit point compact space X and a continuous function f : X —
Y for which f(X) C Y is not limit point compact.
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Note: for the purposes of the following problems, “ regular” means points and (disjoint)
closed sets can be separated with open sets, “normal” means disjoint closed sets can be
separated, T3 means 717 and regular, and T; means 7T and normal.
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Show by examples that the continuous image of T3 need not be T3, and that the
continuous image of a non-7T5 space can be 75!

Show that every closed subset of a normal space is normal, and that every closed
subset of a Ty space is T}j.

Show that for any collection X, # () of topological spaces, if HXCY is Ty in the

product topology, then X, is T} for all a.
(Hint: embed X, in H X, as a closed subset!)

Show that a compact metric space (X, d) is second countable.

(Hint: look at {Ng(z,1/n):z € X} for each n .)

Show that a closed subset of a Lindelof space is Lindelof.

Show by example that a closed subset of a separable space need not be separable.

Show that the continuous image of a separable space is separable, and the continuous
image of a Lindelof space is Lindelof..

Show that if (X, 7(C)) is second countable (with C = {C),}52; countable), then every
basis B for 7 = 7 (C) contains a countable basis B’ C B.

(Hint: look at all B € B with C,,, € B C C,, for some m,n ; then pick (at most) one
for each pair...)

Show that if X is Hausdorff and f:X — X is continuous, then the fixed point set
Fix(f) ={r € X : f(z) =2}
of f is a closed subset of X.

A subset A C X is a retract of X if there is a continuous map r: X — A with roi = Id,
i.e., r(a) = a for all a € A. The map r is called a retraction.

Show that if X is Hausdorff and A C X is a retract of X, then A is closed.
(Hint: show that A is the fixed point set of some map!)
Show that if r : X — A is a retraction and a € A, then
rem (X, a) — m1(A, a)
is a surjective homomorphism.

Show that if a € A C X, m(X,a) = {1}, and f: (A,a) — (Y,b) is continuous, then
if f extends to a continuous map ¢:X — Y (i.e., g|la = f), then f.:m(A,a) — 71 (Y,0)
is the trivial homomorphism.

(The contrapositive of the last part of this statement sounds stronger....)

A space X is contractible if the identity map I: X — X is homotopic to the constant
map c(x) = xg. Show that if X is contractible then any two maps f,g : Y — X
are homotopic. Show that this implies that 71 (X, z9) = {1}.
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For X any set, and a,b € X, show that the collection

T={ACX:acAorb¢ A}
forms a topology on X.
Show that if (X,7) and (Y,7’) are both Hausdorff, then X x Y, with the product
topology, is Hausdorff.
Show that if 7 C 7' are topologies on X, and A C X, then clz/(A) Cclr(A) . Show,
further, that if 7 # 7’ then there is an A C X with clz/(A4) #clr(4) .
For X = R, let 77 be the excluded point topology, excluding 0, and let 75 be the
included point topology, including 1. Show that if a continuous function

[ (X, T) = (X, 1)

has f(0) = 1, then f is constant. Show, more generally, that any continuous function
f:(X,71) — (X,73) has image consisting of at most 2 points.

Show that if 7 C 7' are topologies on the set X and (X,7") is path-connected, then
(X, T) is path-connected.



